Nano Research

, Volume 9, Issue 10, pp 2862–2874 | Cite as

Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells

  • Xiuwen Wang
  • Ying Xie
  • Buhe Bateer
  • Kai PanEmail author
  • Yangtao Zhou
  • Yi Zhang
  • Guofeng Wang
  • Wei Zhou
  • Honggang FuEmail author
Research Article


The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar cells (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I 3 /I redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I 3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I 3 . We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting.


FeS nanosheets high-energy facets counter electrode first-principles calculation catalytic reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1172_MOESM1_ESM.pdf (3.5 mb)
Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells


  1. [1]
    O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.CrossRefGoogle Scholar
  2. [2]
    Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.CrossRefGoogle Scholar
  3. [3]
    Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J.-E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.CrossRefGoogle Scholar
  4. [4]
    Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.CrossRefGoogle Scholar
  5. [5]
    Peng, S. J.; Shi, J. F.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Liang, J.; Chen, J. Ni1-xPtx (x = 0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Res. 2009, 2, 484–492.CrossRefGoogle Scholar
  6. [6]
    Dao, V.-D.; Kim, S.-H.; Choi, H.-S.; Kim, J.-H.; Park, H.-O.; Lee, J.-K. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J. Phys. Chem. C 2011, 115, 25529–25534.CrossRefGoogle Scholar
  7. [7]
    Yu, C.; Fang, H. Q.; Liu, Z. Q.; Hu, H.; Meng, X. T.; Qiu, J. S. Chemically grafting graphene oxide to B, N co-doped graphene via ionic liquid and their superior performance for triiodide reduction. Nano Energy 2016, 25, 184–192.CrossRefGoogle Scholar
  8. [8]
    Meng, X. T.; Yu, C.; Song, X. D.; Liu, Y.; Liang, S. X.; Liu, Z. Q.; Hao, C.; Qiu, J. S. Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500180.CrossRefGoogle Scholar
  9. [9]
    Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683.CrossRefGoogle Scholar
  10. [10]
    Wu, M. X.; Guo, H. Y.; Lin, Y. N.; Wu, K. Z.; Ma, T. L.; Hagfeldt, A. Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 12625–12631.CrossRefGoogle Scholar
  11. [11]
    Liao, Y. P.; Xie, Y.; Pan, K.; Wang, G. F.; Pan, Q. J.; Zhou, W.; Wang, L.; Jiang, B. J.; Fu, H. G. Fe3W3C/WC/graphitic carbon ternary nanojunction hybrids for dye-sensitized solar cells. ChemSusChem 2015, 8, 726–733.CrossRefGoogle Scholar
  12. [12]
    Yun, S. N.; Hagfeldt, A.; Ma, T. L. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 2014, 26, 6210–6237.CrossRefGoogle Scholar
  13. [13]
    Yu, C.; Liu, Z. Q.; Chen, Y. W.; Meng, X. T.; Li, M. Y.; Qiu, J. S. CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for highperformance DSSCs. Sci. China Mater. 2016, 59, 104–111.CrossRefGoogle Scholar
  14. [14]
    Huang, N.; Zhang, S. Z.; Huang, H.; Liu, J. W.; Sun, Y. H.; Sun, P. P.; Bao, C.; Zheng, L. J.; Sun, X. H.; Zhao, X. Z. Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochim. Acta 2016, 192, 521–528.CrossRefGoogle Scholar
  15. [15]
    Meng, X. T.; Yu, C.; Lu, B.; Yang, J.; Qiu J. S. Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 2016, 22, 59–69.CrossRefGoogle Scholar
  16. [16]
    Wang, X. W.; Batter, B.; Xie, Y.; Pan, K.; Liao, Y. P.; Lv, C. M.; Li, M. X.; Sui, S. Y.; Fu, H. G. Highly crystalline, small sized, monodisperse a-NiS nanocrystal ink as an efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 15905–15912.CrossRefGoogle Scholar
  17. [17]
    Xin, X. K.; He, M.; Han, W.; Jung, J.; Lin, Z. Q. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem., Int. Ed. 2011, 50, 11739–11742.CrossRefGoogle Scholar
  18. [18]
    Yu, C.; Meng, X. T.; Song, X. D.; Liang, S. X.; Dong, Q.; Wang, G.; Hao, C.; Yang, X. C.; Ma, T. L.; Ajayan, P. M. et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 2016, 100, 474–483.CrossRefGoogle Scholar
  19. [19]
    Ramasamy, K.; Malik, M. A.; Revaprasadu, N.; O’Brien, P. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 2013, 25, 3551–3569.CrossRefGoogle Scholar
  20. [20]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  21. [21]
    Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.CrossRefGoogle Scholar
  22. [22]
    Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.CrossRefGoogle Scholar
  23. [23]
    Wang, Y.-C.; Wang, D.-Y.; Jiang, Y.-T.; Chen, H.-A.; Chen, C.-C.; Ho, K.-C.; Chou, H.-L.; Chen, C.-W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698.CrossRefGoogle Scholar
  24. [24]
    Hu, Y.; Zheng, Z.; Jia, H. M.; Tang, Y. W.; Zhang, L. Z. Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 13037–13042.CrossRefGoogle Scholar
  25. [25]
    Vanitha, P. V.; O’Brien, P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster. J. Am. Chem. Soc. 2008, 130, 17256–17257.CrossRefGoogle Scholar
  26. [26]
    Nath, M.; Choudhury, A.; Kundu, A.; Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 2003, 15, 2098–2101.CrossRefGoogle Scholar
  27. [27]
    Han, W.; Gao, M. Y. Investigations on iron sulfide nanosheets prepared via a single-source precursor approach. Cryst. Growth Des. 2008, 8, 1023–1030.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y. J.; Du, Y. P.; Xu, H. R.; Wang, Q. B. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach. CrystEngComm 2010, 12, 3658–3663.CrossRefGoogle Scholar
  29. [29]
    Huang, S. S.; He, Q. Q.; Chen, W. L.; Qiao, Q. Q.; Zai, J. T.; Qian, X. F. Ultrathin FeSe2 nanosheets: Controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem.—Eur. J. 2015, 21, 4085–4091.CrossRefGoogle Scholar
  30. [30]
    Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.CrossRefGoogle Scholar
  31. [31]
    Somorjai, G. A.; Blakely, D. W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 1975, 258, 580–583.CrossRefGoogle Scholar
  32. [32]
    Sun, S. G.; Chen, A.-C.; Huang, T.-S.; Li, J.-B.; Tian, Z.-W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J. Electroanal. Chem. 1992, 340, 213–226.CrossRefGoogle Scholar
  33. [33]
    Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.CrossRefGoogle Scholar
  34. [34]
    Biegler, T.; Rand, D. A. J.; Woods, R. Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 269–277.CrossRefGoogle Scholar
  35. [35]
    Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochemical preparation of Pd nanorods with high-index facets. Chem. Commun. 2009, 1502–1504.Google Scholar
  36. [36]
    Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.CrossRefGoogle Scholar
  37. [37]
    Hagfeldt, A.; Grä tzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277.CrossRefGoogle Scholar
  38. [38]
    Miao, X. H.; Pan, K.; Wang, G. F.; Liao, Y. P.; Wang, L.; Zhou, W.; Jiang, B. J.; Pan, Q. J.; Tian, G. H. Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: A counter electrode of dye-sensitized solar cells. Chem.—Eur. J. 2014, 20, 474–482.CrossRefGoogle Scholar
  39. [39]
    Li, Y. H.; Zhang, J. P.; Yang, F. M.; Liang, J.; Sun, H.; Tang, S. W.; Wang, R. S. Morphology and surface properties of LiVOPO4: A first principles study. Phys. Chem. Chem. Phys. 2014, 16, 24604–24609.CrossRefGoogle Scholar
  40. [40]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefGoogle Scholar
  41. [41]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  42. [42]
    Fischer, T. H.; Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. 1992, 96, 9768–9774.CrossRefGoogle Scholar
  43. [43]
    Ganapathy, S.; Wagemaker, M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 2012, 6, 8702–8712.CrossRefGoogle Scholar
  44. [44]
    Jiang, F.; Peckler, L. T.; Muscat, A. J. Phase pure pyrite FeS2 nanocubes synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth Des. 2015, 15, 3565–3572.CrossRefGoogle Scholar
  45. [45]
    Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.-M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.CrossRefGoogle Scholar
  46. [46]
    Ho, C.-H.; Tsai, C.-P.; Chung, C.-C.; Tsai, C.-Y.; Chen, F.-R.; Lin, H.-J.; Lai, C.-H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753–1760.CrossRefGoogle Scholar
  47. [47]
    Wang, H. P.; Salveson, I. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0= x=0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions 2005, 78, 547–567.CrossRefGoogle Scholar
  48. [48]
    Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qi, D. D.; Peng, X. J.; Hagfeldt, A.; Grä tzel, M.; Ma, T. L. Economical Pt-free catalysts for counter electrodes of dyesensitized solar cells. J. Am. Chem. Soc. 2012, 134, 3419–3428.CrossRefGoogle Scholar
  49. [49]
    Cheran, L.-E.; Sadeghi, S.; Thompson, M. Scanning kelvin nanoprobe detection in materials science and biochemical analysis. Analyst 2005, 130, 1569–1576.CrossRefGoogle Scholar
  50. [50]
    Wang, R. H.; Xie, Y.; Shi, K. Y.; Wang, J. Q.; Tian, C. G.; Shen, P. K.; Fu, H. G. Small-sized and contacting Pt–WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells. Chem.—Eur. J. 2012, 18, 7443–7451.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiuwen Wang
    • 1
  • Ying Xie
    • 1
  • Buhe Bateer
    • 1
    • 2
  • Kai Pan
    • 1
    Email author
  • Yangtao Zhou
    • 1
  • Yi Zhang
    • 1
  • Guofeng Wang
    • 1
  • Wei Zhou
    • 1
  • Honggang Fu
    • 1
    Email author
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of ChinaHeilongjiang UniversityHarbinChina
  2. 2.College of Materials and Chemical EngineeringHeilongjiang Institute of TechnologyHarbinChina

Personalised recommendations