Nano Research

, Volume 9, Issue 10, pp 2862–2874 | Cite as

Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells

  • Xiuwen Wang
  • Ying Xie
  • Buhe Bateer
  • Kai Pan
  • Yangtao Zhou
  • Yi Zhang
  • Guofeng Wang
  • Wei Zhou
  • Honggang Fu
Research Article

Abstract

The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar cells (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I 3 /I redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I 3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I 3 . We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting.

Keywords

FeS nanosheets high-energy facets counter electrode first-principles calculation catalytic reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1172_MOESM1_ESM.pdf (3.5 mb)
Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells

References

  1. [1]
    O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.CrossRefGoogle Scholar
  2. [2]
    Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.CrossRefGoogle Scholar
  3. [3]
    Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J.-E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.CrossRefGoogle Scholar
  4. [4]
    Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.CrossRefGoogle Scholar
  5. [5]
    Peng, S. J.; Shi, J. F.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Liang, J.; Chen, J. Ni1-xPtx (x = 0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Res. 2009, 2, 484–492.CrossRefGoogle Scholar
  6. [6]
    Dao, V.-D.; Kim, S.-H.; Choi, H.-S.; Kim, J.-H.; Park, H.-O.; Lee, J.-K. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J. Phys. Chem. C 2011, 115, 25529–25534.CrossRefGoogle Scholar
  7. [7]
    Yu, C.; Fang, H. Q.; Liu, Z. Q.; Hu, H.; Meng, X. T.; Qiu, J. S. Chemically grafting graphene oxide to B, N co-doped graphene via ionic liquid and their superior performance for triiodide reduction. Nano Energy 2016, 25, 184–192.CrossRefGoogle Scholar
  8. [8]
    Meng, X. T.; Yu, C.; Song, X. D.; Liu, Y.; Liang, S. X.; Liu, Z. Q.; Hao, C.; Qiu, J. S. Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500180.CrossRefGoogle Scholar
  9. [9]
    Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680–1683.CrossRefGoogle Scholar
  10. [10]
    Wu, M. X.; Guo, H. Y.; Lin, Y. N.; Wu, K. Z.; Ma, T. L.; Hagfeldt, A. Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 12625–12631.CrossRefGoogle Scholar
  11. [11]
    Liao, Y. P.; Xie, Y.; Pan, K.; Wang, G. F.; Pan, Q. J.; Zhou, W.; Wang, L.; Jiang, B. J.; Fu, H. G. Fe3W3C/WC/graphitic carbon ternary nanojunction hybrids for dye-sensitized solar cells. ChemSusChem 2015, 8, 726–733.CrossRefGoogle Scholar
  12. [12]
    Yun, S. N.; Hagfeldt, A.; Ma, T. L. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 2014, 26, 6210–6237.CrossRefGoogle Scholar
  13. [13]
    Yu, C.; Liu, Z. Q.; Chen, Y. W.; Meng, X. T.; Li, M. Y.; Qiu, J. S. CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for highperformance DSSCs. Sci. China Mater. 2016, 59, 104–111.CrossRefGoogle Scholar
  14. [14]
    Huang, N.; Zhang, S. Z.; Huang, H.; Liu, J. W.; Sun, Y. H.; Sun, P. P.; Bao, C.; Zheng, L. J.; Sun, X. H.; Zhao, X. Z. Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochim. Acta 2016, 192, 521–528.CrossRefGoogle Scholar
  15. [15]
    Meng, X. T.; Yu, C.; Lu, B.; Yang, J.; Qiu J. S. Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 2016, 22, 59–69.CrossRefGoogle Scholar
  16. [16]
    Wang, X. W.; Batter, B.; Xie, Y.; Pan, K.; Liao, Y. P.; Lv, C. M.; Li, M. X.; Sui, S. Y.; Fu, H. G. Highly crystalline, small sized, monodisperse a-NiS nanocrystal ink as an efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 15905–15912.CrossRefGoogle Scholar
  17. [17]
    Xin, X. K.; He, M.; Han, W.; Jung, J.; Lin, Z. Q. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem., Int. Ed. 2011, 50, 11739–11742.CrossRefGoogle Scholar
  18. [18]
    Yu, C.; Meng, X. T.; Song, X. D.; Liang, S. X.; Dong, Q.; Wang, G.; Hao, C.; Yang, X. C.; Ma, T. L.; Ajayan, P. M. et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 2016, 100, 474–483.CrossRefGoogle Scholar
  19. [19]
    Ramasamy, K.; Malik, M. A.; Revaprasadu, N.; O’Brien, P. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 2013, 25, 3551–3569.CrossRefGoogle Scholar
  20. [20]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.CrossRefGoogle Scholar
  21. [21]
    Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.CrossRefGoogle Scholar
  22. [22]
    Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.CrossRefGoogle Scholar
  23. [23]
    Wang, Y.-C.; Wang, D.-Y.; Jiang, Y.-T.; Chen, H.-A.; Chen, C.-C.; Ho, K.-C.; Chou, H.-L.; Chen, C.-W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698.CrossRefGoogle Scholar
  24. [24]
    Hu, Y.; Zheng, Z.; Jia, H. M.; Tang, Y. W.; Zhang, L. Z. Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 13037–13042.CrossRefGoogle Scholar
  25. [25]
    Vanitha, P. V.; O’Brien, P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster. J. Am. Chem. Soc. 2008, 130, 17256–17257.CrossRefGoogle Scholar
  26. [26]
    Nath, M.; Choudhury, A.; Kundu, A.; Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 2003, 15, 2098–2101.CrossRefGoogle Scholar
  27. [27]
    Han, W.; Gao, M. Y. Investigations on iron sulfide nanosheets prepared via a single-source precursor approach. Cryst. Growth Des. 2008, 8, 1023–1030.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y. J.; Du, Y. P.; Xu, H. R.; Wang, Q. B. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach. CrystEngComm 2010, 12, 3658–3663.CrossRefGoogle Scholar
  29. [29]
    Huang, S. S.; He, Q. Q.; Chen, W. L.; Qiao, Q. Q.; Zai, J. T.; Qian, X. F. Ultrathin FeSe2 nanosheets: Controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem.—Eur. J. 2015, 21, 4085–4091.CrossRefGoogle Scholar
  30. [30]
    Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.CrossRefGoogle Scholar
  31. [31]
    Somorjai, G. A.; Blakely, D. W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 1975, 258, 580–583.CrossRefGoogle Scholar
  32. [32]
    Sun, S. G.; Chen, A.-C.; Huang, T.-S.; Li, J.-B.; Tian, Z.-W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J. Electroanal. Chem. 1992, 340, 213–226.CrossRefGoogle Scholar
  33. [33]
    Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.CrossRefGoogle Scholar
  34. [34]
    Biegler, T.; Rand, D. A. J.; Woods, R. Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 269–277.CrossRefGoogle Scholar
  35. [35]
    Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochemical preparation of Pd nanorods with high-index facets. Chem. Commun. 2009, 1502–1504.Google Scholar
  36. [36]
    Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.CrossRefGoogle Scholar
  37. [37]
    Hagfeldt, A.; Grä tzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277.CrossRefGoogle Scholar
  38. [38]
    Miao, X. H.; Pan, K.; Wang, G. F.; Liao, Y. P.; Wang, L.; Zhou, W.; Jiang, B. J.; Pan, Q. J.; Tian, G. H. Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: A counter electrode of dye-sensitized solar cells. Chem.—Eur. J. 2014, 20, 474–482.CrossRefGoogle Scholar
  39. [39]
    Li, Y. H.; Zhang, J. P.; Yang, F. M.; Liang, J.; Sun, H.; Tang, S. W.; Wang, R. S. Morphology and surface properties of LiVOPO4: A first principles study. Phys. Chem. Chem. Phys. 2014, 16, 24604–24609.CrossRefGoogle Scholar
  40. [40]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefGoogle Scholar
  41. [41]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  42. [42]
    Fischer, T. H.; Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. 1992, 96, 9768–9774.CrossRefGoogle Scholar
  43. [43]
    Ganapathy, S.; Wagemaker, M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 2012, 6, 8702–8712.CrossRefGoogle Scholar
  44. [44]
    Jiang, F.; Peckler, L. T.; Muscat, A. J. Phase pure pyrite FeS2 nanocubes synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth Des. 2015, 15, 3565–3572.CrossRefGoogle Scholar
  45. [45]
    Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.-M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.CrossRefGoogle Scholar
  46. [46]
    Ho, C.-H.; Tsai, C.-P.; Chung, C.-C.; Tsai, C.-Y.; Chen, F.-R.; Lin, H.-J.; Lai, C.-H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753–1760.CrossRefGoogle Scholar
  47. [47]
    Wang, H. P.; Salveson, I. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0= x=0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions 2005, 78, 547–567.CrossRefGoogle Scholar
  48. [48]
    Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qi, D. D.; Peng, X. J.; Hagfeldt, A.; Grä tzel, M.; Ma, T. L. Economical Pt-free catalysts for counter electrodes of dyesensitized solar cells. J. Am. Chem. Soc. 2012, 134, 3419–3428.CrossRefGoogle Scholar
  49. [49]
    Cheran, L.-E.; Sadeghi, S.; Thompson, M. Scanning kelvin nanoprobe detection in materials science and biochemical analysis. Analyst 2005, 130, 1569–1576.CrossRefGoogle Scholar
  50. [50]
    Wang, R. H.; Xie, Y.; Shi, K. Y.; Wang, J. Q.; Tian, C. G.; Shen, P. K.; Fu, H. G. Small-sized and contacting Pt–WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells. Chem.—Eur. J. 2012, 18, 7443–7451.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiuwen Wang
    • 1
  • Ying Xie
    • 1
  • Buhe Bateer
    • 1
    • 2
  • Kai Pan
    • 1
  • Yangtao Zhou
    • 1
  • Yi Zhang
    • 1
  • Guofeng Wang
    • 1
  • Wei Zhou
    • 1
  • Honggang Fu
    • 1
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of ChinaHeilongjiang UniversityHarbinChina
  2. 2.College of Materials and Chemical EngineeringHeilongjiang Institute of TechnologyHarbinChina

Personalised recommendations