Abstract
Well-dispersed, uniform cobalt ferrite (CoFe2O4) nanoparticles (NPs) with diameters of 9, 11, 14, and 30 nm were synthesized by thermal decomposition of a metal–organic salt. Multiple variables, including the interparticle distance, moment, and anisotropy, were altered by dilution in a silica matrix and reduction in hydrogen to reveal the intrinsic correlation between the ratio of remanence to saturation magnetization (M r/M s) and interparticle dipolar interactions, the strength of which was estimated by the maximum dipolar field H dip. To date, this correlation has not been systematically investigated experimentally. To prevent the particles from agglomerating, the reduction was performed after dilution. The results revealed that the correlation between M r/M s and H dip roughly followed M r/M s ∝ 1/lgH dip independent of the size, distance, moment, and anisotropy of the magnetic nanoparticles. In particular, the correlation was closer for the nanoparticle systems that had higher concentrations or moments, that is, stronger dipolar interactions. For the single-phase CoFe2O4 nanoparticles, deviation from M r/M s ∝ 1/lgH dip can be attributed to the effects of surface spin, and for the slightly reduced nanoparticles, this deviation can be attributed to the pinning effect of CoFe2O4 on CoFe2.
Similar content being viewed by others
References
Zhao, X. F.; Xu, S. L.; Wang, L. Y.; Duan, X.; Zhang, F. Z. Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res. 2010, 3, 200–210.
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.
Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. L.; Shipley, H. J.; Kan, A.; Tomson, M. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006, 314, 964–967.
Triet, N. M.; Trung, T. Q.; Hien, N. T. D.; Siddiqui, S.; Kim, D.-I.; Lee, J. C.; Lee, N.-E. A flexible magnetoelectric field-effect transistor with magnetically responsive nanohybrid gate dielectric layer. Nano Res. 2015, 8, 3421–3429.
Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.
Ooi, F.; DuChene, J. S.; Qiu, J. J.; Graham, J. O.; Engelhard, M. H.; Cao, G. X.; Gai, Z.; Wei, W. D. A facile solvothermal synthesis of octahedral Fe3O4 nanoparticles. Small 2015, 11, 2649–2653.
Liu, Y. X.; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanidedoped bifunctional nanocrystals. Angew. Chem., Int. Ed. 2013, 52, 4366–4369.
Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia–borane. Nano Res. 2010, 3, 676–684.
Min, H.; Jo, S. M.; Kim, H. S. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Small 2015, 11, 2536–2542.
Mendelev, V. S.; Ivanov, A. O. Ferrofluid aggregation in chains under the influence of a magnetic field. Phys. Rev. E 2004, 70, 051502.
Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501.
Laureti, S.; Varvaro, G.; Testa, A. M.; Fiorani, D.; Agostinelli, E.; Piccaluga, G.; Musinu, A.; Ardu, A.; Peddis, D. Magnetic interactions in silica coated nanoporous assemblies of CoFe2O4 nanoparticles with cubic magnetic anisotropy. Nanotechnology 2010, 21, 315701.
Prado, Y.; Mazerat, S.; Rivière, E.; Rogez, G.; Gloter, A.; Sté phan, O.; Catala, L.; Mallah, T. Magnetization reversal in CsNiIICrIII(CN)6 coordination nanoparticles: Unravelling surface anisotropy and dipolar interaction effects. Adv. Funct. Mater. 2014, 24, 5402–5411.
Ewerlin, M.; Demirbas, D.; Brüssing, F.; Petracic, O.; Ü. nal, A. A.; Valencia, S.; Kronast, F.; Zabel, H. Magnetic dipole and higher pole interaction on a square lattice. Phys. Rev. Lett. 2013, 110, 177209.
Woinska, M.; Szczytko, J.; Majhofer, A.; Gosk, J.; Dziatkowski, K.; Twardowski, A. Magnetic interactions in an ensemble of cubic nanoparticles: A Monte Carlo study. Phys. Rev. B 2013, 88, 144421.
Stoner, E. C.; Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 1948, 240, 599–642.
Vargas, J. M.; Nunes, W. C.; Socolovsky, L. M.; Knobel, M.; Zanchet, D. Effect of dipolar interaction observed in ironbased nanoparticles. Phys. Rev. B 2005, 72, 184428.
Zan, F. L.; Ma, Y. Q.; Ma, Q.; Zheng, G. H.; Dai, Z. X.; Wu, M. Z.; Li, G.; Sun, Z. Q.; Chen, X. S. One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/Co0.7Fe0.3 nanocomposite permanent magnets. J. Alloys Compd. 2013, 553, 79–85.
Kurtan, U.; Topkaya, R.; Baykal, A. Sol–gel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. Mater. Res. Bull. 2013, 48, 4889–4895.
Mumtaz, A.; Maaz, K.; Janjua, B.; Hasanain, S. K.; Bertino, M. F. Exchange bias and vertical shift in CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 2007, 313, 266–272.
Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel autocombustion method. Chem. Mater. 2006, 18, 3835–3842.
Diodati, S.; Pandolfo, L.; Caneschi, A.; Gialanella, S.; Gross, S. Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 2014, 7, 1027–1042.
Leite, G. C. P.; Chagas, E. F.; Pereira, R.; Prado, R. J.; Terezo, A. J.; Alzamora, M.; Baggio-Saitovitch, E. Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 2012, 324, 2711–2716.
Li, Y. F.; Hu, Y. J.; Huo, J. C.; Jiang, H.; Li, C. Z.; Huang, G. J. Stable core shell Co3Fe7–CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach. Ind. Eng. Chem. Res. 2012, 51, 11157–11162.
Soares, J. M.; Cabral, F. A. O.; de Araú jo, J. H.; Machado, F. L. A. Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 2011, 98, 072502.
Li, W. M.; Wong, S. K.; Herng, T. S.; Yap, L. K.; Sim, C. H.; Yang, Z. C.; Chen, Y. J.; Shi, J. Z.; Han, G. C.; Xue, J. M. et al. Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions. Nano Res. 2015, 8, 3639–3650.
Wang, C.; Peng, S.; Lacroix, L.-M.; Sun, S. H. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009, 2, 380–385.
Skomski, R.; Coey, J. M. D. Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 1993, 48, 15812–15816.
Mazz, K.; Usman, M.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Bertino, M. F. J. Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature. J. Appl. Phys. 2009, 105, 113917.
Kneller, E. F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3588–3560.
Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y. W.; Park, B. H. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B 2002, 106, 6831-6833.
Lakshmi, N.; Bhargava, H.; Suwalka, O. P.; Venugopalan, K.; Sebastian, V., Reddy, V. R.; Gupta, A. Magnetic properties resulting from core-shell interactions in nanosized Ni0.25Co0.25Zn0.5Fe2O4. Phys. Rev. B 2009, 80, 174425.
Del Bianco, L.; Fiorani, D.; Testa, A. M.; Bonetti, E.; Savini, L.; Signoretti, S. Magnetothermal behavior of a nanoscale Fe/Fe oxide granular system. Phys. Rev. B 2002, 66, 174418.
Fu, J. C.; Zhang, J. L.; Peng, Y.; Zhao, J. G.; Tan, G. G.; Mellors, N. J.; Xie, E. Q.; Han, W. H. Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning. Nanoscale 2012, 4, 3932–3936.
Quesada, A.; Rubio-Marcos, F.; Marco, J. F.; Mompean, F. J.; García-Hernández, M.; Fernández, J. F. On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites. Appl. Phys. Lett. 2014, 105, 202405.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Geng, B., Ding, Z. & Ma, Y. Unraveling the correlation between the remanence ratio and the dipolar field in magnetic nanoparticles by tuning concentration, moment, and anisotropy. Nano Res. 9, 2772–2781 (2016). https://doi.org/10.1007/s12274-016-1166-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-016-1166-y