Nano Research

, Volume 9, Issue 9, pp 2760–2771 | Cite as

Rapid identification of electricigens via silver-plated photonic crystal filters

  • Delong Wang
  • Xiangwei ZhaoEmail author
  • Xing Liu
  • Zhongde Mu
  • Zhongze GuEmail author
Research Article


Short acquisition time and small volumes of incubated bacterial cultures are ideal for the routine and rapid identification or screening of electricigens in research and applications of microbial fuel cells. In this study, a functional substrate based on colloidal photonic crystals (PCs) was developed both for the filtration and identification of electricigens by surface-enhanced Raman scattering (SERS). The fabrication of the substrate was simplified by electroless plating of silver on filtration-based self-assembled PCs on a filter membrane. The silver-plated ordered PC structure provided a 107-fold enhancement of Raman intensity compared to that obtained with a bare PC substrate. The substrate allowed for a “drop and measure” method of bacterial identification within 5 min with a 5 μL sample volume only. The results showed that not only the electricigens Geobacter sp. and Shewanella sp. could be discriminated with species and strain specificity, but also Geobacter sp. and pilus-mutated Geobacter sp. strains. The developed silver-plated PC filter offers tremendous opportunities in energetic, environmental, and clinical applications.


electricigens surface-enhanced Raman scattering (SERS) photonic crystal electroless plating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1164_MOESM1_ESM.pdf (519 kb)
Supplementary material, approximately 519 KB.


  1. [1]
    Malvankar, N. S.; Tuominen, M. T.; Lovley, D. R. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy Environ. Sci. 2012, 5, 5790–5797.CrossRefGoogle Scholar
  2. [2]
    Butler, J. E.; Young, N. D.; Aklujkar, M.; Lovley, D. R. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics 2012, 13, 471.CrossRefGoogle Scholar
  3. [3]
    Liu, Y. L.; Chen, Y.-R.; Nou, X.; Chao, K. L. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Appl. Spectrosc. 2007, 61, 824–831.CrossRefGoogle Scholar
  4. [4]
    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A. SERS substrates fabricated using ceramic filters for the detection of bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 591–598.CrossRefGoogle Scholar
  5. [5]
    Osawa, M.; Ikeda, M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: Contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 1991, 95, 9914–9919.CrossRefGoogle Scholar
  6. [6]
    Shanmukh, S.; Jones, L.; Zhao, Y.-P.; Driskell, J. D.; Tripp, R. A.; Dluhy, R. A. Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal. Bioanal. Chem. 2008, 390, 1551–1555.CrossRefGoogle Scholar
  7. [7]
    Efrima, S.; Zeiri, L. Understanding SERS of bacteria. J. Raman Spectrosc. 2009, 40, 277–288.CrossRefGoogle Scholar
  8. [8]
    Çulha, M.; Yazici, M. M.; Kahraman, M.; Sahin, F.; Kocagöz, S. Surface-enhanced Raman scattering of bacteria in microwells constructed from silver nanoparticles. J. Nanotechnol. 2012, 2012, Article ID297560.Google Scholar
  9. [9]
    Aubertin, P.; Ben Aissa, M. A.; Raouafi, N.; Joiret, S.; Courty, A.; Maisonhaute, E. Optical response and SERS properties of individual large scale supracrystals made of small silver nanocrystals. Nano Res. 2015, 8, 1615–1626.CrossRefGoogle Scholar
  10. [10]
    Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.CrossRefGoogle Scholar
  11. [11]
    Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.CrossRefGoogle Scholar
  12. [12]
    Tang, H. B.; Meng, G. W.; Li, Z. B.; Zhu, C. H.; Huang, Z. L.; Wang, Z. M.; Li, F. D. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates. Nano Res. 2015, 8, 2261–2270.CrossRefGoogle Scholar
  13. [13]
    Chu, H.; Huang, Y. W.; Zhao, Y. P. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Appl. Spectrosc. 2008, 62, 922–931.CrossRefGoogle Scholar
  14. [14]
    Zhou, Q.; Yang, Y.; Ni, J. E.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.CrossRefGoogle Scholar
  15. [15]
    Premasiri, W. R.; Moir, D. T.; Klempner, M. S.; Krieger, N.; Jones, G.; Ziegler, L. D. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 2005, 109, 312–320.CrossRefGoogle Scholar
  16. [16]
    Feng, L.; Ma, R. P.; Wang, Y. D.; Xu, D. R.; Xiao, D. Y.; Liu, L. X.; Lu, N. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 2015, 8, 3715–3724.CrossRefGoogle Scholar
  17. [17]
    Yang, Q.; Deng, M. M.; Li, H. Z.; Li, M. Z.; Zhang, C.; Shen, W. Z.; Li, Y.; Guo, D.; Song, Y. L. Highly reproducible SERS arrays directly written by inkjet printing. Nanoscale 2015, 7, 421–425.CrossRefGoogle Scholar
  18. [18]
    Sivanesan, A.; Witkowska, E.; Adamkiewicz, W.; Dziewit, L.; Kaminska, A.; Waluk, J. Nanostructured silver–gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 2014, 139, 1037–1043.CrossRefGoogle Scholar
  19. [19]
    Liu, T.-Y.; Tsai, K.-T.; Wang, H.-H.; Chen, Y.; Chen, Y.-H.; Chao, Y.-C.; Chang, H.-H.; Lin, C.-H.; Wang, J.-K.; Wang, Y.-L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011, 2, 538.CrossRefGoogle Scholar
  20. [20]
    Chen, J.; Wu, X. M.; Huang, Y.-W.; Zhao, Y. P. Detection of E. coli using SERS active filters with silver nanorod array. Sensor. Actuat. B: Chem. 2014, 191, 485–490.CrossRefGoogle Scholar
  21. [21]
    Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.CrossRefGoogle Scholar
  22. [22]
    Kubo, S.; Gu, Z.-Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field. Chem. Mater. 2005, 17, 2298–2309.CrossRefGoogle Scholar
  23. [23]
    González-Tudela, A.; Hung, C.-L.; Chang, D. E.; Cirac, J. I.; Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photonics 2015, 9, 320–325.CrossRefGoogle Scholar
  24. [24]
    Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4:Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.CrossRefGoogle Scholar
  25. [25]
    Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Song, Y. L.; Jiang, L. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem., Int. Ed. 2014, 53, 5791–5795.CrossRefGoogle Scholar
  26. [26]
    Kim, S. M.; Zhang, W.; Cunningham, B. T. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt. Express 2010, 18, 4300–4309.CrossRefGoogle Scholar
  27. [27]
    Zhao, X. W.; Xue, J. Y.; Mu, Z. D.; Huang, Y.; Lu, M.; Gu, Z. Z. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2015, 72, 268–274.CrossRefGoogle Scholar
  28. [28]
    Mu, Z. D.; Zhao, X. W.; Huang, Y.; Lu, M.; Gu, Z. Z. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small 2015, 11, 6036–6043.CrossRefGoogle Scholar
  29. [29]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.CrossRefGoogle Scholar
  30. [30]
    Chen, Z.; Zhan, P.; Wang, Z. L.; Zhang, J. H.; Zhang, W. Y.; Ming, N. B.; Chan, C. T.; Sheng, P. Two-and threedimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv. Mater. 2004, 16, 417–422.CrossRefGoogle Scholar
  31. [31]
    Tremblay, P. L.; Aklujkar, M.; Leang, C.; Nevin, K. P.; Lovley, D. A genetic system for Geobacter metallireducens: Role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ. Microbiol. Rep. 2012, 4, 82–88.CrossRefGoogle Scholar
  32. [32]
    Liu, X.; Wu, W. G.; Gu, Z. Z. Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J. Power Sources 2015, 277, 110–115.CrossRefGoogle Scholar
  33. [33]
    Liu, X.; Tremblay, P.-L.; Malvankar, N. S.; Nevin, K. P.; Lovley, D. R.; Vargas, M. A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IVpili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl. Environ. Microbiol. 2014, 80, 1219–1224.CrossRefGoogle Scholar
  34. [34]
    Cho, I.-H.; Bhandari, P.; Patel, P.; Irudayaraj, J. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens. Bioelectron. 2015, 64, 171–176.CrossRefGoogle Scholar
  35. [35]
    Junesch, J.; Sannomiya, T. Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl. Mater. Interfaces 2014, 6, 6322–6331.CrossRefGoogle Scholar
  36. [36]
    Wei, W. Y.; White, I. M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 2012, 137, 1168–1173.CrossRefGoogle Scholar
  37. [37]
    Naja, G.; Bouvrette, P.; Hrapovic, S.; Luong, J. H. Ramanbased detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007, 132, 679–686.CrossRefGoogle Scholar
  38. [38]
    Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X.; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surfaceenhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851.CrossRefGoogle Scholar
  39. [39]
    Zheng, G. C.; Polavarapu, L.; Liz-Marzá n, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanoparticle-loaded filter paper: A recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem. Commun. 2015, 51, 4572–4575.CrossRefGoogle Scholar
  40. [40]
    Zhou, X.; Zhou, F.; Liu, H. L.; Yang, L. B.; Liu, J. H. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst 2013, 138, 5832–5838.CrossRefGoogle Scholar
  41. [41]
    Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 2013, 392, 237–246.CrossRefGoogle Scholar
  42. [42]
    Alexander, T. A.; Pellegrino, P. M.; Gillespie, J. B. Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl. Spectrosc. 2003, 57, 1340–1345.CrossRefGoogle Scholar
  43. [43]
    Duché, D.; Masclaux, C.; Le Rouzo, J.; Gourgon, C. Photonic crystals for improving light absorption in organic solar cells. J. Appl. Phys. 2015, 117, 053108.CrossRefGoogle Scholar
  44. [44]
    Guo, M.; Xie, K. Y.; Lin, J.; Yong, Z. H.; Yip, C. T.; Zhou, L. M.; Wang, Y.; Huang, H. T. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881–9888.CrossRefGoogle Scholar
  45. [45]
    Turner, M. D.; Saba, M.; Zhang, Q. M.; Cumming, B. P.; Schröder-Turk, G. E.; Gu, M. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 2013, 7, 801–805.CrossRefGoogle Scholar
  46. [46]
    Bell, S. E. J.; Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580–15581.CrossRefGoogle Scholar
  47. [47]
    Wang, Y. L.; Wei, H.; Li, B. L.; Ren, W.; Guo, S. J.; Dong, S. J.; Wang, E. K. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Commun. 2007, 5220–5222.Google Scholar
  48. [48]
    Zhou, H. B.; Yang, D. T.; Mircescu, N. E.; Ivleva, N. P.; Schwarzmeier, K.; Wieser, A.; Schubert, S.; Niessner, R.; Haisch, C. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim. Acta 2015, 182, 2259–2266.CrossRefGoogle Scholar
  49. [49]
    Guzelian, A. A.; Sylvia, J. M.; Janni, J. A.; Clauson, S. L.; Spencer, K. M. SERS of whole-cell bacteria and trace levels of biological Molecules. In Proceedings of the SPIE 4577, Vibrational Spectroscopy-based Sensor Systems, Boston, USA, 2002, pp 182–192.CrossRefGoogle Scholar
  50. [50]
    Zhou, H. B.; Yang, D. T.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014, 86, 1525–1533.CrossRefGoogle Scholar
  51. [51]
    Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesen, S. Bacillus spore classification via surfaceenhanced Raman spectroscopy and principal component analysis. Appl. Spectrosc. 2008, 62, 267–272.CrossRefGoogle Scholar
  52. [52]
    Laucks, M. L.; Sengupta, A.; Junge, K.; Davis, E. J.; Swanson, B. D. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2005, 59, 1222–1228.CrossRefGoogle Scholar
  53. [53]
    Nevin, K. P.; Kim, B.-C.; Glaven, R. H.; Johnson, J. P.; Woodard, T. L.; Methé, B. A.; DiDonato, R. J.; Covalla, S. F.; Franks, A. E.; Liu, A. N. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One, 2009, 4, e5628.Google Scholar
  54. [54]
    Richter, L. V.; Sandler, S. J.; Weis, R. M. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 2012, 194, 2551–2563.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.Suzhou Key Laboratory of Environment and BiosafetySuzhou Research Institute of Southeast UniversitySuzhouChina

Personalised recommendations