Advertisement

Nano Research

, Volume 9, Issue 9, pp 2715–2728 | Cite as

Tunable filter Raman spectroscopy of purified semiconducting and metallic carbon nanotubes

  • Paul Finnie
Research Article

Abstract

Tunable filter Raman spectroscopy is used to efficiently produce Raman excitation maps of unpurified and type-purified single walled carbon nanotubes (SWCNTs). Maps with fine excitation resolution (1 nm) are created over a wide wavelength range (727 to 980 nm), extending from metallic to semiconducting resonances. At a given wavelength, the wide bandwidth (>3,000 cm–1) allows the comparison of the G band with the radial breathing mode (RBM), and shows the 2D band and other less prominent bands. Materials examined included unsorted powders, aqueous sorted semiconductors, aqueous sorted metals, and polyfluorene sorted semiconductors in toluene. The Raman excitation profiles of the G band are broad, relative to the RBM bands. The maps offer evidence of minority species contamination, except in the case of the polyfluorene sorted semiconductors. Tunable Raman spectroscopy data help validate the simpler fixed wavelength Raman spectroscopy approaches to purity assessment.

Keywords

single walled carbon nanotube (SWCNT) tunable Raman spectroscopy purity metallicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1160_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 2047 KB.

References

  1. [1]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK,1998.CrossRefGoogle Scholar
  2. [2]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  3. [3]
    Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G. F. Raman Spectroscopy in Graphene Related Systems; Wiley-VCH: Weinheim, Germany, 2011.CrossRefGoogle Scholar
  4. [4]
    Kaminska, K; Lefebvre, J; Austing, D. G.; Finnie, P. Realtime global Raman imaging and optical manipulation of suspended carbon nanotubes. Phys. Rev. B 2006, 73, 235410.CrossRefGoogle Scholar
  5. [5]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Uemezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synt. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  6. [6]
    Thomsen, C.; Telg, H.; Maultzsch, J.; Reich, S. Chirality assignments in carbon nanotubes based on resonant Raman scattering. Phys. Stat. Sol. (b) 2005, 242, 1802–1806.CrossRefGoogle Scholar
  7. [7]
    Maultzsch, J.; Telg, H; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B 2005, 72, 205438.CrossRefGoogle Scholar
  8. [8]
    Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L. et al. Quantifying carbon-nanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.CrossRefGoogle Scholar
  9. [9]
    Brar, V. W.; Samsonidize, G. G.; Santos, A. P.; Chou, S. G.; Chattopadhyay, D.; Kim, S. N.; Papadimitrakopoulos, F.; Zheng, M.; Jagota, A.; Onoa, G. B. et al. Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter. J. Nanosci. Nanotechnol. 2005, 5, 209–228.CrossRefGoogle Scholar
  10. [10]
    Pesce, P. B. C.; Araujo, P. T.; Nikolaev, P.; Doorn, S. K.; Hata, K.; Saito, R.; Dresselhaus, M. S.; Jorio, A Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Appl. Phys. Lett. 2010, 96, 051910.CrossRefGoogle Scholar
  11. [11]
    Son, H. B.; Reina, A.; Dresselhaus, M. S.; Kong, J. Characterizing the chirality distribution of single-walled carbon nanotube materials with tunable Raman spectroscopy. Phys. Stat. Sol. (b) 2006, 243, 3161–3165.CrossRefGoogle Scholar
  12. [12]
    Inoue, T.; Hasegawa, D.; Chiashi, S.; Maruyama, S. Chirality analysis of horizontally aligned single-walled carbon nanotubes: Decoupling populations and lengths. J. Mater. Chem. A 2015, 3, 15119–15123.CrossRefGoogle Scholar
  13. [13]
    Canonico, M.; Adams, G. B.; Poweleit, C.; Menéndez, J.; Page, J. B.; Harris, G.; van der Meulen, H. P.; Calleja, J. M.; Rubio, J. Characterization of carbon nanotubes using Raman excitation profiles. Phys. Rev. B 2002, 65, 201402(R).CrossRefGoogle Scholar
  14. [14]
    Doorn, S. K.; Heller, D. A.; Barone, P. W.; Usrey, M. L.; Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 2004, 78, 1147–1155.CrossRefGoogle Scholar
  15. [15]
    O’Connell, M. J.; Sivaram, S.; Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 2004, 69, 235415.CrossRefGoogle Scholar
  16. [16]
    Telg, H.; Maultzsch, J.; Reich, S.; Hennrich, F.; Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 2004, 93, 177401.CrossRefGoogle Scholar
  17. [17]
    Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.CrossRefGoogle Scholar
  18. [18]
    Park, J. S.; Oyama, Y.; Saito, R.; Izumida, W.; Jiang, J.; Sato, K.; Fantini, C.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Raman resonance window of single-wall carbon nanotubes. Phys. Rev. B 2006, 74, 165414.CrossRefGoogle Scholar
  19. [19]
    Hároz, E. H.; Rice, W. D.; Lu, B. Y.; Ghosh, S.; Hauge, R. H.; Weisman, R. B.; Doorn, S. K.; Kono, J. Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. ACS Nano 2010, 4, 1955–1962.CrossRefGoogle Scholar
  20. [20]
    Blum, C.; Stürzl, N.; Hennrich, F.; Lebedkin, S.; Heeg, S.; Dumlich, H.; Reich, S.; Kappes, M. M. Selective bundling of zigzag single-walled carbon nanotubes. ACS Nano 2011, 5, 2847–2854.CrossRefGoogle Scholar
  21. [21]
    Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5, 3). Phys. Rev. Lett. 2010, 104, 207401.CrossRefGoogle Scholar
  22. [22]
    Telg, H.; Thomsen, C.; Maultzsch, J. Raman intensities of the radial-breathing mode in carbon nanotubes: The excitonphonon coupling as a function of (n1, n2). J. Nanophotonics 2010, 4, 041660.CrossRefGoogle Scholar
  23. [23]
    Telg, H.; Maultzsch, J.; Reich, S.; Thomsen, C. First and second optical transitions in single-walled carbon nanotubes: A resonant Raman study. Phys. Stat. Sol. (b) 2007, 244, 4006–4010.CrossRefGoogle Scholar
  24. [24]
    Doorn, S. K.; Araujo, P. T.; Hata, K.; Jorio, A. Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy. Phys. Rev. B 2008, 78, 165408.CrossRefGoogle Scholar
  25. [25]
    Araujo, P. T.; Doorn, S. K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M. A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401.CrossRefGoogle Scholar
  26. [26]
    Telg, H.; Duque, J. G.; Staiger, M.; Tu, X. M.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. Chiral index dependence of the G+ and G Raman modes in semiconducting carbon nanotubes. ACS Nano 2012, 6, 904–911.CrossRefGoogle Scholar
  27. [27]
    Fantini, C.; Jorio, A.; Souza, M.; Saito, R.; Samsonidze, G. G.; Dresselhaus, M. S.; Pimenta, M. A. Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes. Phys. Rev. B 2005, 72, 085446.CrossRefGoogle Scholar
  28. [28]
    Luo, Z. T.; Papadimitrakopoulos, F.; Doorn, S. K. Intermediate-frequency Raman modes for the lower optical transitions of semiconducting single-walled carbon nanotubes. Phys. Rev. B. 2007, 75, 205438.CrossRefGoogle Scholar
  29. [29]
    Luo, Z. T.; Papadimitrakopoulos, F.; Doorn, S. K. Bundling effects on the intensities of second-order Raman modes in semiconducting single-walled carbon nanotubes. Phys. Rev. B 2008, 77, 035421.CrossRefGoogle Scholar
  30. [30]
    Laudenbach, J.; Hennrich, F.; Telg, H.; Kappes, M.; Maultzsch, J. Resonance behavior of the defect-induced Raman mode of single-chirality enriched carbon nanotubes. Phys. Rev. B 2013, 87, 165423.CrossRefGoogle Scholar
  31. [31]
    Duque, J. G.; Telg, H.; Chen, H.; Swan, A. K.; Shreve, A. P.; Tu, X. M.; Zheng, M.; Doorn, S. K. Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy. Phys. Rev. Lett. 2012, 108, 117404.CrossRefGoogle Scholar
  32. [32]
    Jiang, J.; Saito, R.; Grüneis, A.; Chou, S. G.; Samsonidze, G. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Phys. Rev. B, 2005, 71, 205420.CrossRefGoogle Scholar
  33. [33]
    Duque, J. G.; Chen, H.; Swan, A. K.; Shreve, A. P.; Kilina, S.; Tretiak, S.; Tu, X. M.; Zheng, M.; Doorn, S. K. Violation of the Condon approximation in semiconducting carbon nanotubes. ACS Nano 2011, 5, 5233–5241.CrossRefGoogle Scholar
  34. [34]
    Moura, L. G.; Moutinho, M. V. O.; Venezuela, P.; Fantini, C.; Righi, A.; Strano, M. S.; Pimenta, M. A. Raman excitation profile of the G band in single-chirality carbon nanotubes. Phys. Rev. B 2014, 89, 035402.CrossRefGoogle Scholar
  35. [35]
    Hároz, E. H.; Duque, J. G.; Barros, E. B.; Telg, H.; Simpson, J. R.; Hight Walker, A. R.; Khripin, C. Y.; Fagan, J. A.; Tu, X. M.; Zheng, M. et al. Asymmetric excitation profiles in the resonance Raman response of armchair carbon nanotubes. Phys. Rev. B 2015, 91, 205446.CrossRefGoogle Scholar
  36. [36]
    Finnie, P.; Ding, J. F.; Li, Z.; Kingston, C. T. Assessment of the metallicity of single-wall carbon nanotube ensembles at high purities. J. Phys. Chem. C 2014, 118, 30127–30138.CrossRefGoogle Scholar
  37. [37]
    Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179–2187.CrossRefGoogle Scholar
  38. [38]
    Yin, Y.; Walsh, A. G.; Vamivakas, A. N.; Cronin, S. B.; Stolyarov, A. M.; Tinkham, M.; Bacsa, W.; Ünlü, M. S.; Goldberg, B. B.; Swan, A. K. Tunable resonant Raman scattering from singly resonant single wall carbon nanotubes. IEEE J. Sel. Top. Quant. 2006, 12, 1083–1090.CrossRefGoogle Scholar
  39. [39]
    Fábián, G.; Kramberger, C.; Friedrich, A.; Simon, F.; Pichler, T. A broadband and high throughput single-monochromator Raman spectrometer: Application for single-wall carbon nanotubes. Rev. Sci. Instrum. 2011, 82, 023905.CrossRefGoogle Scholar
  40. [40]
    Fábián, G.; Kramberger, C.; Friedrich, A.; Simon, F.; Pichler, T. Adaptation of a commercial Raman spectrometer for multiline and broadband laser operation. Phys. Stat. Sol. (b) 2011, 248, 2581–2584.CrossRefGoogle Scholar
  41. [41]
    Stürzl, N; Lebedkin, S; Klumpp, S; Hennrich, F; Kappes, M. M. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging. Anal. Chem. 2013, 85, 4554–4559.CrossRefGoogle Scholar
  42. [42]
    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95.CrossRefGoogle Scholar
  43. [43]
    Jiang, J.; Saito, R.; Grüneis, A.; Chou, S. G.; Samsonidze, G. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Phys. Rev. B 2005, 71, 205420.CrossRefGoogle Scholar
  44. [44]
    Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G. P. et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339.CrossRefGoogle Scholar
  45. [45]
    Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dunford, J. L.; Malenfant, P. R. L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747.CrossRefGoogle Scholar
  46. [46]
    Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.CrossRefGoogle Scholar
  47. [47]
    Kim, K. K.; Park, J. S.; Kim, S. J.; Geng, H. Z.; An, K. H.; Yang, C.-M.; Sato, K.; Saito, R.; Lee, Y. H. Dependence of Raman spectra G’ band intensity on metallicity of single-wall carbon nanotubes. Phys. Rev. B 2007, 76, 205426.CrossRefGoogle Scholar
  48. [48]
    Martins Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.CrossRefGoogle Scholar
  49. [49]
    Blackburn, J. L.; Engtrakul, C.; McDonald, T. J.; Dillon, A. C.; Heben, M. J. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions. J. Phys. Chem. B 2006, 110, 25551–25558.CrossRefGoogle Scholar
  50. [50]
    Hatting, B.; Heeg, S.; Reich, S. Raman spectra of metallic carbon nanotubes in solution and on substrates. Phys. Stat. Sol. (b) 2013, 250, 2639–2642.CrossRefGoogle Scholar
  51. [51]
    Hároz, E. H.; Duque, J. G.; Rice, W. D.; Densmore, C. G.; Kono, J.; Doorn, S. K. Resonant Raman spectroscopy of armchair carbon nanotubes: Absence of broad G feature. Phys. Rev. B 2011, 84, 121403(R).CrossRefGoogle Scholar
  52. [52]
    Hasdeo, E. H.; Nugraha, A. R. T.; Sato, K.; Dresselhaus, M. S.; Saito, R. Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes. Phys. Rev. B 2013, 88, 115107.CrossRefGoogle Scholar
  53. [53]
    Débarre, A.; Kobylko, M.; Bonnot, A. M.; Richard, A.; Popov, V. N.; Henrard, L.; Kociak, M. Electronic and mechanical coupling of carbon nanotubes: A tunable resonant Raman study of systems with known structures. Phys. Rev. Lett. 2008, 101, 197403.CrossRefGoogle Scholar
  54. [54]
    Levshov, D. I.; Michel, T.; Arenal, R.; Tran, H. N.; Than, T. X.; Paillet, M.; Yuzyuk, Y. I.; Sauvajol, J.-L. Interlayer dependence of g-modes in semiconducting double-walled carbon nanotubes. J. Phys. Chem. C 2015, 119, 23196–23202.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Security and Disruptive Technologies PortfolioNational Research Council CanadaOttawaCanada

Personalised recommendations