Advertisement

Nano Research

, Volume 9, Issue 8, pp 2520–2530 | Cite as

Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers

  • Ren Cai
  • Dan Yang
  • Jin Wu
  • Liqin Zhang
  • Cuichen Wu
  • Xigao Chen
  • Yanyue Wang
  • Shuo Wan
  • Fengwei Hou
  • Qingyu Yan
  • Weihong TanEmail author
Research Article

Abstract

Ultrathin two-dimensional (2D) porous Zn(OH)2 nanosheets (PNs) were fabricated by means of one-dimensional Cu nanowires as backbones. The PNs have thickness of approximately 3.8 nm and pore size of 4–10 nm. To form “smart” porous nanosheets, DNA aptamers were covalently conjugated to the surface of PNs. These ultrathin nanosheets show good biocompatibility, efficient cellular uptake, and promising pH-stimulated drug release.

Keywords

aptamer porous Zn(OH)2 nanosheets cancer cell cell-targeted delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1138_MOESM1_ESM.pdf (3 mb)
Supplementary material, approximately 3086 KB.

References

  1. [1]
    Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 6139.CrossRefGoogle Scholar
  2. [2]
    Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.CrossRefGoogle Scholar
  3. [3]
    Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.CrossRefGoogle Scholar
  4. [4]
    Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.CrossRefGoogle Scholar
  5. [5]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  6. [6]
    Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.CrossRefGoogle Scholar
  7. [7]
    Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.CrossRefGoogle Scholar
  8. [8]
    Yang, D.; Lu, Z. Y.; Rui, X. H.; Huang, X.; Li, H.; Zhu, J. X.; Zhang, W. Y.; Lam, Y. M.; Hng, H. H.; Zhang, H. et al. Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew. Chem. 2014, 126, 9506–9509.CrossRefGoogle Scholar
  9. [9]
    Cai, R.; Chen, J.; Yang, D.; Zhang, Z. Y.; Peng, S. J.; Wu, J.; Zhang, W. Y.; Zhu, C. F.; Lim, T. M.; Zhang, H. et al. Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: Synthesis and water treatment application. ACS Appl. Mater. Interfaces 2013, 5, 10389–10394.CrossRefGoogle Scholar
  10. [10]
    Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, X. B.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223.CrossRefGoogle Scholar
  11. [11]
    Xiao, J. W.; Yang, S. X.; Wan, L.; Xiao, F.; Wang, S. Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J. Power Sources 2014, 245, 1027–1034.CrossRefGoogle Scholar
  12. [12]
    Yang, Y. Q.; Yang, Y. Q.; Wu, H. X.; Guo, S. W. Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties. CrystEngComm 2013, 15, 2608–2615.CrossRefGoogle Scholar
  13. [13]
    Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.CrossRefGoogle Scholar
  14. [14]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  15. [15]
    Hu, X. L.; Masuda, Y.; Ohji, T.; Kato, K. Fabrication of Zn(OH)2/ZnO nanosheet-ZnO nanoarray hybrid structured films by a dissolution-recrystallization route. J. Am. Ceram. Soc. 2010, 93, 881–886.CrossRefGoogle Scholar
  16. [16]
    Cai, R.; Chen, J.; Zhu, J. X.; Xu, C.; Zhang, W. Y.; Zhang, C. M.; Shi, W. H.; Tan, H. T.; Yang, D.; Hng, H. H. et al. Synthesis of CuxS/Cu nanotubes and their lithium storage properties. J. Phys. Chem. C 2012, 116, 12468–12474.CrossRefGoogle Scholar
  17. [17]
    Shahmiri, M.; Ibrahim, N. A.; Shayesteh, F.; Asim, N.; Motallebi, N. Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. J. Mater. Res. 2013, 28, 3109–3118.CrossRefGoogle Scholar
  18. [18]
    Palomar-Pardave, M.; Gonzales, I.; Romero-Romo, M.; Oropez, T. MES 23: Electrochemistry, Nanotechnology, and Biomaterials; Electrochemical Society: Pennington, NJ, USA, 2008.Google Scholar
  19. [19]
    Rich, R. Inorganic Reactions in Water; Springer: Berlin, Heidelberg, Germany, 2007.CrossRefGoogle Scholar
  20. [20]
    Emeléus, H. J.; Sharpe, A. G. Advances in Inorganic Chemistry and Radiochemistry; Academic Press: New York, 1964.Google Scholar
  21. [21]
    Pung, S.-Y.; Lee, W.-P.; Aziz, A. Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012, 2012, Article ID 608183.Google Scholar
  22. [22]
    Alyea, H. N. Heat of solution of Na2S2O3(5H2O). J. Chem. Educ. 1969, 46, A34.Google Scholar
  23. [23]
    Huang, M.; Tso, E.; Datye, A. K.; Prairie, M. R.; Stange, B. M. Removal of silver in photographic processing waste by TiO2-based photocatalysis. Environ. Sci. Technol. 1996, 30, 3084–3088.CrossRefGoogle Scholar
  24. [24]
    Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.CrossRefGoogle Scholar
  25. [25]
    Cai, R.; Liu, H.; Zhang, W. Y.; Tan, H. T.; Yang, D.; Huang, Y. Z.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties. Small 2013, 9, 1036–1041.CrossRefGoogle Scholar
  26. [26]
    Chen, J. S.; Liu, J.; Qiao, S. Z.; Xu, R.; Lou, X. W. Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chem. Commun. 2011, 47, 10443–10445.CrossRefGoogle Scholar
  27. [27]
    Adair, J. H.; Suvaci, E. Morphological control of particles. Curr. Opin. Colloid Interface Sci. 2000, 5, 160–167.CrossRefGoogle Scholar
  28. [28]
    Wang, R. W.; Zhu, G. Z.; Mei, L.; Xie, Y.; Ma, H. B.; Ye, M.; Qing, F. L.; Tan, W. H. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J. Am. Chem. Soc. 2014, 136, 2731–2734.CrossRefGoogle Scholar
  29. [29]
    Acres, R. G.; Ellis, A. V.; Alvino, J.; Lenahan, C. E.; Khodakov, D. A.; Metha, G. F.; Andersson, G. G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J. Phys. Chem. C 2012, 116, 6289–6297.CrossRefGoogle Scholar
  30. [30]
    Dixit, C. K.; Vashist, S. K.; O’Neill, F. T.; O’Reilly, B.; MacCraith, B. D.; O’Kennedy, R. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal. Chem. 2010, 82, 7049–7052.CrossRefGoogle Scholar
  31. [31]
    Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: New York, 2008; pp 871–879.Google Scholar
  32. [32]
    Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394–10403.CrossRefGoogle Scholar
  33. [33]
    Xiao, Z. Y.; Shangguan, D.; Cao, Z. H.; Fang, X. H.; Tan, W. H. Cell-specific internalization study of an aptamer from whole cell selection. Chem.—Eur. J. 2008, 14, 1769–1775.CrossRefGoogle Scholar
  34. [34]
    Weiss, R. B.; Sarosy, G.; Clagett-Carr, K.; Russo, M.; Leyland-Jones, B. Anthracycline analogs: The past, present, and future. Cancer Chemother. Pharmacol. 1986, 18, 185–197.CrossRefGoogle Scholar
  35. [35]
    Cooper, G. M. The Cell-A Molecular Approach, 2nd ed.; Sinauer Associates, Inc.: Washington, D. C., 2000.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ren Cai
    • 1
  • Dan Yang
    • 3
  • Jin Wu
    • 3
  • Liqin Zhang
    • 1
  • Cuichen Wu
    • 1
  • Xigao Chen
    • 1
  • Yanyue Wang
    • 1
  • Shuo Wan
    • 1
  • Fengwei Hou
    • 3
  • Qingyu Yan
    • 3
  • Weihong Tan
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  2. 2.Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and TheranosticsHunan UniversityChangshaChina
  3. 3.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations