Advertisement

Nano Research

, Volume 9, Issue 8, pp 2510–2519 | Cite as

Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors

  • Yanjuan Yang
  • Liang HeEmail author
  • Chunjuan Tang
  • Ping Hu
  • Xufeng Hong
  • Mengyu Yan
  • Yixiao Dong
  • Xiaocong Tian
  • Qiulong Wei
  • Liqiang MaiEmail author
Research Article

Abstract

In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm–2) and energy density (4.5 mWh·cm–3) at a scan rate of 10 mV·s–1. Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.

Keywords

photolithography supercapacitors pyrolysis microelectromechanical system (MEMS) carbon nanotubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1137_MOESM1_ESM.pdf (941 kb)
Supplementary material, approximately 941 KB.

References

  1. [1]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  2. [2]
    Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.CrossRefGoogle Scholar
  3. [3]
    Lin, T. Q.; Chen, I.-W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.CrossRefGoogle Scholar
  4. [4]
    Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.CrossRefGoogle Scholar
  5. [5]
    Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012, 1, 552–565.CrossRefGoogle Scholar
  6. [6]
    Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 356–361.CrossRefGoogle Scholar
  7. [7]
    Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.CrossRefGoogle Scholar
  8. [8]
    Liu, W. W.; Lu, C. X.; Wang, X. L.; Tay, R. Y.; Tay, B. K. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. ACS Nano 2015, 9, 1528–1542.CrossRefGoogle Scholar
  9. [9]
    Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.CrossRefGoogle Scholar
  10. [10]
    Wei, L.; Nitta, N.; Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 2013, 7, 6498–6506.CrossRefGoogle Scholar
  11. [11]
    Jiang, W. C.; Zhai, S. L.; Qian, Q. H.; Yuan, Y.; Karahan, H. E.; Wei, L.; Goh, K.; Ng, A. K.; Wei, J.; Chen, Y. Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: Realizing a built-to-order concept for micro-supercapacitors. Energy Environ. Sci. 2016, 9, 611–622.CrossRefGoogle Scholar
  12. [12]
    Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.CrossRefGoogle Scholar
  13. [13]
    Jiang, S. L.; Shi, T. L.; Liu, D.; Long, H.; Xi, S.; Wu, F. S.; Li, X. P.; Xia, Q.; Tang, Z. R. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. J. Power Sources 2014, 262, 494–500.CrossRefGoogle Scholar
  14. [14]
    Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip microsupercapacitors. Carbon 2013, 57, 395–400.CrossRefGoogle Scholar
  15. [15]
    Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.CrossRefGoogle Scholar
  16. [16]
    Shen, C. W.; Wang, X. H.; Li, S. W.; Wang, J. G.; Zhang, W. F.; Kang, F. Y. A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies. J. Power Sources 2013, 234, 302–309.CrossRefGoogle Scholar
  17. [17]
    Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W. Z.; Wang, C. L. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE T. Nanotechnol. 2010, 9, 734–740.CrossRefGoogle Scholar
  18. [18]
    Wang, H. J.; Peng, C.; Zheng, J. D.; Peng, F.; Yu, H. Design, synthesis and the electrochemical performance of MnO2/C@CNT as supercapacitor material. Mater. Res. Bull. 2013, 48, 3389–3393.CrossRefGoogle Scholar
  19. [19]
    Kim, S.-K.; Park, H. S. Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Adv. 2014, 4, 47827–47832.CrossRefGoogle Scholar
  20. [20]
    Liu, Y. Y.; Tang, J.; Chen, X. Q.; Xin, J. H. Decoration of carbon nanotubes with chitosan. Carbon 2005, 43, 3178–3180.CrossRefGoogle Scholar
  21. [21]
    Jiang, S. L.; Shi, T. L.; Zhan, X. B.; Xi, S.; Long, H.; Gong, B.; Li, J. J.; Cheng, S. Y.; Huang, Y. Y.; Tang, Z. R. Scalable fabrication of carbon-based MEMS/NEMS and their applications: A review. J. Micromech. Microeng. 2015, 25, 113001.CrossRefGoogle Scholar
  22. [22]
    Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.CrossRefGoogle Scholar
  23. [23]
    Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.CrossRefGoogle Scholar
  24. [24]
    Simon, P.; Gogotsi, Y. Capacitive energy storage in nano-structured carbon-electrolyte systems. Acc. Chem. Res. 2013, 46, 1094–1103.CrossRefGoogle Scholar
  25. [25]
    Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.CrossRefGoogle Scholar
  26. [26]
    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.CrossRefGoogle Scholar
  27. [27]
    Sivaraman, P.; Bhattacharrya, A. R.; Mishra, S. P.; Thakur, A. P.; Shashidhara, K.; Samui, A. B. Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon. Electrochim. Acta 2013, 94, 182–191.CrossRefGoogle Scholar
  28. [28]
    Penmatsa, V.; Kawarada, H.; Wang, C. L. Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis. J. Micromech. Microeng. 2012, 22, 045024.CrossRefGoogle Scholar
  29. [29]
    He, L.; Toda, M.; Kawai, Y.; Miyashita, H.; Omori, M.; Hashida, T.; Berger, R.; Ono, T. Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst. Technol. 2014, 20, 201–208.CrossRefGoogle Scholar
  30. [30]
    He, L.; Toda, M.; Kawai, Y.; Sarbi, M. F.; Omori, M.; Hashida, T.; Ono, T. Fabrication of a Si-PZT hybrid XY-microstage with CNT-carbon hinges. IEEJ Trans. Sens. Micromach. 2012, 132, 425–426.CrossRefGoogle Scholar
  31. [31]
    Zhou, P.; Yang, X.; He, L.; Hao, Z. M.; Luo, W.; Xiong, B.; Xu, X.; Niu, C. J.; Yan, M. Y.; Mai, L. Q. The Young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl. Phys. Lett. 2015, 106, 111908.CrossRefGoogle Scholar
  32. [32]
    Reserbat-Plantey, A.; Schädler, K. G.; Gaudreau, L.; Navickaite, G.; Güttinger, J.; Chang, D.; Toninelli, C.; Bachtold, A.; Koppens, F. H. L. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 2016, 7, 10218.CrossRefGoogle Scholar
  33. [33]
    Lau, C.; Cooney, M. J.; Atanassov, P. Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 2008, 24, 7004–7010.CrossRefGoogle Scholar
  34. [34]
    Yang X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X.-M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707–1713.CrossRefGoogle Scholar
  35. [35]
    Lin, J. H.; He, C. Y.; Zhao, Y.; Zhang, S. S. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensor. Actuat. B 2009, 137, 768–773.CrossRefGoogle Scholar
  36. [36]
    Yamamoto, G.; Suk, J. W.; An, J.; Piner, R. D.; Hashida, T.; Takagi, T.; Ruoff, R. S. The influence of Nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam. Relat. Mater. 2010, 19, 748–751.CrossRefGoogle Scholar
  37. [37]
    Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. Highperformance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.CrossRefGoogle Scholar
  38. [38]
    Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.CrossRefGoogle Scholar
  39. [39]
    Pech, D.; Brunet, M.; Taberna, P.-L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 2010, 195, 1266–1269.CrossRefGoogle Scholar
  40. [40]
    Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.CrossRefGoogle Scholar
  41. [41]
    Jiang, Y. Q.; Zhou, Q.; Lin, L. Planar MEMS supercapacitor using carbon nanotube forests. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, pp 587–590.Google Scholar
  42. [42]
    Wu, Z.-S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.Google Scholar
  43. [43]
    Yun, J.; Kim, D.; Lee, G.; Ha, J. S. All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 2014, 79, 156–164.CrossRefGoogle Scholar
  44. [44]
    Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.CrossRefGoogle Scholar
  45. [45]
    Park, B. Y.; Taherabadi, L.; Wang, C. L.; Zoval, J.; Madou, M. J. Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J. Electrochem. Soc. 2005, 152, J136–J143.CrossRefGoogle Scholar
  46. [46]
    Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.CrossRefGoogle Scholar
  47. [47]
    An, Z. L.; He, L.; Toda, M.; Yamamoto, G.; Hashida, T.; Ono, T. Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology 2015, 26, 195601.CrossRefGoogle Scholar
  48. [48]
    Xu, G. H.; Zheng, C.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Nie, J. Q.; Wang, X. H.; Wei, F. Binder-free activated carbon/ carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 2011, 4, 870–881.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yanjuan Yang
    • 1
  • Liang He
    • 1
    Email author
  • Chunjuan Tang
    • 1
    • 2
  • Ping Hu
    • 1
  • Xufeng Hong
    • 1
  • Mengyu Yan
    • 1
  • Yixiao Dong
    • 1
  • Xiaocong Tian
    • 1
  • Qiulong Wei
    • 1
  • Liqiang Mai
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Department of Mathematics and PhysicsLuoyang Institute of Science and TechnologyLuoyangChina

Personalised recommendations