Nano Research

, Volume 9, Issue 8, pp 2498–2509 | Cite as

N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production

  • Yongpeng LeiEmail author
  • Qi Shi
  • Cheng Han
  • Bing Wang
  • Nan Wu
  • Hong Wang
  • Yingde WangEmail author
Research Article


Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks, simultaneously providing more active sites and higher conductivity. The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment. The resulting product (NG-SCCf), possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks, exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media. Moreover, in the absence of Pt as co-catalyst, NG-SCCf shows a photocatalytic H2 production rate of 66.0 μmol·h–1·g–1, 4.4-fold higher than that of SCCf. This outstanding activity is intimately related to the in situ grown NG, hierarchically porous structure, and 3D interconnected networks, which not only introduce more active sites but also enable smooth electron transfer, mass transport, and effective separation of electron-hole pairs. Considering the abundance of the green raw material in combination with easy and low-cost preparation, this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields, such as electro- and photocatalysis.


N-doped graphene silk cocoon interconnected carbon fibers oxygen reduction reaction photocatalytic hydrogen production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1136_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1460 KB.


  1. [1]
    Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Chen, G. H. Boron and nitrogen codoped nanodiamond as an efficient metal-free catalyst for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 14992–14998.CrossRefGoogle Scholar
  2. [2]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  3. [3]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.CrossRefGoogle Scholar
  4. [4]
    Kim, J. Y.; Oh, T. K.; Shin, Y.; Bonnett, J.; Weil, K. S. A novel non-platinum group electrocatalyst for PEM fuel cell application. Int. J. Hydrogen Energ. 2011, 36, 4557–4564.CrossRefGoogle Scholar
  5. [5]
    Huang, D. K.; Zhang, B. Y.; Li, S. H.; Wang, M. K.; Shen, Y. Mn3O4/carbon nanotube nanocomposites as electrocatalysts for the oxygen reduction reaction in alkaline solution. ChemElectroChem 2014, 1, 1531–1536.CrossRefGoogle Scholar
  6. [6]
    Gao, X. P.; Yang, H. X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci. 2010, 3, 174–189.CrossRefGoogle Scholar
  7. [7]
    Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.CrossRefGoogle Scholar
  8. [8]
    Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.CrossRefGoogle Scholar
  9. [9]
    Zhang, Y.; Zhuang, X. D.; Su, Y. Z.; Zhang, F.; Feng, X. L. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7742–7746.CrossRefGoogle Scholar
  10. [10]
    Yang, S. B.; Feng, X. L.; Wang, X. C.; Müllen, K. Graphenebased carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 2011, 50, 5339–5343.CrossRefGoogle Scholar
  11. [11]
    Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.CrossRefGoogle Scholar
  12. [12]
    Liu, D.; Zhang, X. P.; Sun, Z. C.; You, T. Y. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 2013, 5, 9528–9531.CrossRefGoogle Scholar
  13. [13]
    Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.CrossRefGoogle Scholar
  14. [14]
    Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.CrossRefGoogle Scholar
  15. [15]
    Zhong, R. S.; Qin, Y. H.; Niu, D. F.; Tian, J. W.; Zhang, X. S.; Zhou, X. G.; Yuan, W. K. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J. Power Sources 2013, 225, 192–199.CrossRefGoogle Scholar
  16. [16]
    Shi, Q.; Lei, Y. P.; Wang, Y. D.; Wang, H. P.; Jiang, L. H.; Yuan, H. L.; Fang, D.; Wang, B.; Wu, N.; Gou, Y. Z. B, N-codoped 3D micro-/mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction. Curr. Appl. Phys. 2015, 15, 1606–1614.CrossRefGoogle Scholar
  17. [17]
    Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.CrossRefGoogle Scholar
  18. [18]
    Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.CrossRefGoogle Scholar
  19. [19]
    Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.CrossRefGoogle Scholar
  20. [20]
    Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.CrossRefGoogle Scholar
  21. [21]
    Raymundo-Piñero, E.; Cadek, M.; Béguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039.CrossRefGoogle Scholar
  22. [22]
    Guo, C. Z.; Liao, W. L.; Li, Z. B.; Chen, C. G. Exploration of the catalytically active site structures of animal biomassmodified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 2015, 85, 279–288.CrossRefGoogle Scholar
  23. [23]
    Ling, Z.; Wang, Z. Y.; Zhang, M. D.; Yu, C.; Wang, G.; Dong, Y. F.; Liu, S. H.; Wang, Y. W.; Qiu, J. S. Sustainable synthesis: Sustainable synthesis and assembly of biomassderived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119.CrossRefGoogle Scholar
  24. [24]
    Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.CrossRefGoogle Scholar
  25. [25]
    Huang, Y. Y.; Wu, P.; Wang, Y. B.; Wang, W. J.; Yuan, D. Q.; Yao, J. N. Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. J. Mater. Chem. A 2014, 2, 19765–19770.CrossRefGoogle Scholar
  26. [26]
    Gao, S. Y.; Geng, K. R.; Liu, H. Y.; Wei, X. J.; Zhang, M.; Wang, P.; Wang, J. J. Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 2015, 8, 221–229.CrossRefGoogle Scholar
  27. [27]
    Guo, Z. Y.; Xiao, Z.; Ren, G. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1244–1255.CrossRefGoogle Scholar
  28. [28]
    Chaudhari, K. N.; Song, M. Y.; Yu, J. S. Transforming hair into heteroatom-doped carbon with high surface area. Small 2014, 10, 2625–2636.CrossRefGoogle Scholar
  29. [29]
    Peng, S. J.; Jin, G. R.; Li, L. L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225–1241.CrossRefGoogle Scholar
  30. [30]
    Park, H. W.; Lee, D. U.; Zamani, P.; Seo., M. H.; Nazar, L. F.; Chen, Z. W. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 2014, 10, 192–200.CrossRefGoogle Scholar
  31. [31]
    Wang, B.; Wang, Y. D.; Lei, Y. P.; Xie, S.; Wu, N.; Gou, Y. Z.; Han, C.; Shi, Q.; Fang, D. Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C 2016, 4, 295–304.CrossRefGoogle Scholar
  32. [32]
    Liang, Y. R.; Wu, D. C.; Fu, R. W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 2013, 3, 1119.Google Scholar
  33. [33]
    Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C.; Gou, Y. Z.; Shi, Q.; Fang, D. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media. Sci. Rep. 2015, 5, 17396.CrossRefGoogle Scholar
  34. [34]
    Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.CrossRefGoogle Scholar
  35. [35]
    Shi, Q.; Lei, Y. P.; Wang, Y. D.; Wang, Z. M. In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. J. Inorg. Mater. 2016, 31, 351–357.CrossRefGoogle Scholar
  36. [36]
    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.CrossRefGoogle Scholar
  37. [37]
    Li, L. J.; Manthiram, A. O-and N-doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv. Energy Mater. 2014, 4, 1301795.CrossRefGoogle Scholar
  38. [38]
    Ma, R. G.; Xia, B. Y.; Zhou, Y.; Li, P. X.; Chen, Y. F.; Liu, Q.; Wang, J. C. Ionic liquid-assisted synthesis of dualdoped graphene as efficient electrocatalysts for oxygen reduction. Carbon 2016, 102, 58–65.CrossRefGoogle Scholar
  39. [39]
    Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.CrossRefGoogle Scholar
  40. [40]
    Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1060–1064.CrossRefGoogle Scholar
  41. [41]
    Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.CrossRefGoogle Scholar
  42. [42]
    Wang, Y. D.; Han, C.; Zheng, D. C.; Lei, Y. P. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. J. Mater. Chem. A 2014, 2, 9607–9612.CrossRefGoogle Scholar
  43. [43]
    Raidongia, K.; Nag, A.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.; Rao, C. N. R. BCN: A graphene analogue with remarkable adsorptive properties. Chem.—Eur. J. 2010, 16, 149–157.CrossRefGoogle Scholar
  44. [44]
    Ma, Y.; Wang, S.; Chen, Z. H. In situ growth of a carbon interphase between carbon fibres and a polycarbosilanederived silicon carbide matrix. Carbon 2011, 49, 2869–2872.CrossRefGoogle Scholar
  45. [45]
    Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 2012, 51, 11371–11375.CrossRefGoogle Scholar
  46. [46]
    Xu, J. X.; Zhao, Y.; Shen, C.; Guan, L. H. Sulfur- and nitrogen-doped, ferrocene-derived mesoporous carbons with efficient electrochemical reduction of oxygen. ACS Appl. Mater. Interface 2013, 5, 12594–12601.CrossRefGoogle Scholar
  47. [47]
    Chen, L. H.; Li, X. Y.; Tian, G.; Li, Y.; Tan, H. Y.; van Tendeloo, G.; Zhu, G. S.; Qiu, S. L.; Yang, X. Y.; Su, B. L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem 2011, 4, 1452–1456.CrossRefGoogle Scholar
  48. [48]
    Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.CrossRefGoogle Scholar
  49. [49]
    Chen, R. X.; Yu, J. G.; Xiao, W. Hierarchically porous MnO2 microspheres with enhanced adsorption performance. J. Mater. Chem. A 2013, 1, 11682–11690.CrossRefGoogle Scholar
  50. [50]
    Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.CrossRefGoogle Scholar
  51. [51]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  52. [52]
    Liu, Y. X.; Zhang, B. S.; Luo, L. F.; Chen, X. Y.; Wang, Z. L.; Wu, E. L.; Su, D. S.; Huang, W. X. TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew. Chem., Int. Ed. 2015, 54, 15260–15265.CrossRefGoogle Scholar
  53. [53]
    Zhou, Y. X.; Lei, Y. P.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Ultra-thin Cu2S nanosheets: Effective cocatalysts for photocatalytic hydrogen production. Chem. Commun. 2015, 51, 13305–13308.CrossRefGoogle Scholar
  54. [54]
    Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.CrossRefGoogle Scholar
  55. [55]
    Hao, R.; Jiang, B. J.; Li, M. X.; Xie, Y.; Fu, H. G. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci. China Mater. 2015, 58, 363–369.CrossRefGoogle Scholar
  56. [56]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  57. [57]
    Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.CrossRefGoogle Scholar
  58. [58]
    Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.CrossRefGoogle Scholar
  59. [59]
    Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.CrossRefGoogle Scholar
  60. [60]
    Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583.CrossRefGoogle Scholar
  61. [61]
    Tan, L. L.; Chai, S. P.; Mohamed, A. R. Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 2012, 5, 1868–1882.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Basic EducationNational University of Defense TechnologyChangshaChina
  2. 2.Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryNational University of Defense TechnologyChangshaChina
  3. 3.College of Materials Science and EngineeringWuhan Textile UniversityWuhanChina
  4. 4.Luoyang Ship Material Research InstituteLuoyangChina

Personalised recommendations