Nano Research

, Volume 9, Issue 8, pp 2487–2497 | Cite as

A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer

  • Yu-e Shi
  • Wenshou Wang
  • Jinhua ZhanEmail author
Research Article


The sensitive and on-site detection of inorganic explosives has raised serious concerns regarding public safety. However, high stability and non-volatility features currently limit their rapid on-site detection. Surface-enhanced Raman spectroscopy (SERS) is emerging as a powerful technique for the trace-level detection of different molecules. Plasmonic Ag nanowires were produced by a hydrothermal synthesis method using polyvinylpyrrolidone (PVP) as a negatively charged stabilizer. Here, we report a rapid detection method for inorganic explosives based on a simple surface swab with a positively charged diethyldithiocarbamate-modified Ag nanowire membrane coupled with SERS. This membrane, serving as an excellent SERS substrate with high uniformity, stability, and reusability, can capture both typical oxidizers in inorganic explosives and organic nitro-explosives, via electrostatic interaction. The detection level of perchlorates (ClO4 ), chlorates (ClO3 ), nitrates (NO3 ), picric acid, and 2,4-dinitrophenol is as high as 2.0, 1.7, 0.1, 45.8, and 36.6 ng, respectively. In addition, simulated typical inorganic explosives such as black powders, firecrackers, and match heads could also be detected. We believe that this membrane represents an attractive alternative for rapid on-site detection of inorganic explosives with high efficiency.


Ag explosives nanowire surface-enhanced Raman scattering on-site detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1135_MOESM1_ESM.pdf (3.4 mb)
Supplementary material, approximately 3507 KB.


  1. [1]
    Salinas, Y.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261–1296.CrossRefGoogle Scholar
  2. [2]
    Hakonen, A.; Andersson, P. O.; Schmidt, M. S.; Rindzevicius, T.; Käll, M. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Anal. Chim. Acta 2015, 893, 1–13.CrossRefGoogle Scholar
  3. [3]
    Bhattacharjee, Y. Combating terrorism: New efforts to detect explosives require advances on many fronts. Science 2008, 320, 1416–1417.CrossRefGoogle Scholar
  4. [4]
    Pushkarsky, M. B.; Dunayevskiy, I. G.; Prasanna, M.; Tsekoun, A. G.; Go, R.; Patel, C. K. N. High-sensitivity detection of TNT. Proc. Natl. Acad. Sci. USA 2006, 103, 19630–19634.CrossRefGoogle Scholar
  5. [5]
    Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal–organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881–2885.CrossRefGoogle Scholar
  6. [6]
    Geng, Y.; Ali, M. A.; Clulow, A. J.; Fan, S. Q.; Burn, P. L.; Gentle, I. R.; Meredith, P.; Shaw, P. E. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Nat. Commun. 2015, 6, 8240.CrossRefGoogle Scholar
  7. [7]
    Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 2011, 133, 8424–8427.CrossRefGoogle Scholar
  8. [8]
    Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812.CrossRefGoogle Scholar
  9. [9]
    Wang, J. P.; Yang, L.; Liu, B. H.; Jiang, H. H.; Liu, R. Y.; Yang, J. W.; Han, G. M.; Mei, Q. S.; Zhang, Z. P. Inkjetprinted silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal. Chem. 2014, 86, 3338–3345.CrossRefGoogle Scholar
  10. [10]
    Lichtenstein, A.; Havivi, E.; Shacham, R.; Hahamy, E.; Leibovich, R.; Pevzner, A.; Krivitsky, V.; Davivi, G.; Presman, I.; Elnathan, R. et al. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Commun. 2014, 5, 4195.CrossRefGoogle Scholar
  11. [11]
    Kolla, P. The application of analytical methods to the detection of hidden explosives and explosive devices. Angew. Chem., Int. Ed. 1997, 36, 800–811.CrossRefGoogle Scholar
  12. [12]
    Blanco, G. A.; Nai, Y. H.; Hilder, E. F.; Shellie, R. A.; Dicinoski, G. W.; Haddad, P. R.; Breadmore, M. C. Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection. Anal. Chem. 2011, 83, 9068–9075.CrossRefGoogle Scholar
  13. [13]
    Barron, L.; Gilchrist, E. Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal. Chim. Acta 2014, 806, 27–54.CrossRefGoogle Scholar
  14. [14]
    Flanigan, P. M.; Brady, J. J.; Judge, E. J.; Levis, R. J. Determination of inorganic improvised explosive device signatures using laser electrospray mass spectrometry detection with offline classification. Anal. Chem. 2011, 83, 7115–7122.CrossRefGoogle Scholar
  15. [15]
    Tam, M.; Hill, H. H., Jr. Secondary electrospray ionizationion mobility spectrometry for explosive vapor detection. Anal. Chem. 2004, 76, 2741–2747.CrossRefGoogle Scholar
  16. [16]
    Marshall, A. The nature of explosives. Sci. Am. 1916, 82, 230–231.CrossRefGoogle Scholar
  17. [17]
    Moretti, J. D.; Sabatini, J. J.; Chen, G. Periodate salts as pyrotechnic oxidizers: Development of barium- and perchlorate-free incendiary formulations. Angew. Chem., Int. Ed. 2012, 51, 6981–6983.CrossRefGoogle Scholar
  18. [18]
    Peng, L. Y.; Hua, L.; Wang, W. G.; Zhou, Q. H.; Li, H. Y. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization. Sci. Rep. 2014, 4, 6631.CrossRefGoogle Scholar
  19. [19]
    Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and rna detection. Science 2002, 297, 1536–1540.CrossRefGoogle Scholar
  20. [20]
    Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.CrossRefGoogle Scholar
  21. [21]
    Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.CrossRefGoogle Scholar
  22. [22]
    Li, D. W.; Qu, L. L.; Zhai, W. L.; Xue, J. Q.; Fossey, J. S.; Long, Y. T. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 2011, 45, 4046–4052.CrossRefGoogle Scholar
  23. [23]
    Hargreaves, M. D.; Page, K.; Munshi, T.; Tomsett, R.; Lynch, G.; Edwards, H. G. M. Analysis of seized drugs using portable Raman spectroscopy in an airport environment—A proof of principle study. J. Raman Spectrosc. 2008, 39, 873–880.CrossRefGoogle Scholar
  24. [24]
    Zhang, X. Y.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489.CrossRefGoogle Scholar
  25. [25]
    Golightly, R. S.; Doering, W. E.; Natan, M. J. Surface-enhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano 2009, 3, 2859–2869.CrossRefGoogle Scholar
  26. [26]
    Halvorson, R. A.; Vikesland, P. J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 2010, 44, 7749–7755.CrossRefGoogle Scholar
  27. [27]
    Pallaoro, A.; Braun, G. B.; Moskovits, M. Biotags based on surface-enhanced Raman can be as bright as fluorescence tags. Nano Lett. 2015, 15, 6745–6750.CrossRefGoogle Scholar
  28. [28]
    Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.CrossRefGoogle Scholar
  29. [29]
    Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.CrossRefGoogle Scholar
  30. [30]
    Aikens, C. M.; Schatz, G. C. TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. J. Phys. Chem. A 2006, 110, 13317–13324.CrossRefGoogle Scholar
  31. [31]
    Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237.CrossRefGoogle Scholar
  32. [32]
    Wei, H.; Zhang, S. P.; Tian, X. R.; Xu, H. X. Highly tunable propagating surface plasmons on supported silver nanowires. Proc. Natl. Acad. Sci. USA 2013, 110, 4494–4499.CrossRefGoogle Scholar
  33. [33]
    Park, S. G.; Mun, C.; Lee, M.; Jeon, T. Y.; Shim, H. S.; Lee, Y. J.; Kwon, J. D.; Kim, C. S.; Kim, D. H. 3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors. Adv. Mater. 2015, 27, 4290–4295.CrossRefGoogle Scholar
  34. [34]
    Sun, Y.; Xia, Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002, 14, 833–837.CrossRefGoogle Scholar
  35. [35]
    Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.CrossRefGoogle Scholar
  36. [36]
    Baik, J. M.; Lee, S. J.; Moskovits, M. Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. Nano Lett. 2009, 9, 672–676.CrossRefGoogle Scholar
  37. [37]
    Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229− 1233.CrossRefGoogle Scholar
  38. [38]
    Zhu, S.; Zhang, X. L.; Cui, J. C.; Shi, Y. E.; Jiang, X. H.; Liu, Z.; Zhan, J. H. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst 2015, 140, 2815–2822.CrossRefGoogle Scholar
  39. [39]
    Soto, C. A. T.; Costa, A. C., Jr.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A. Surface enhanced Raman scattering, natural bond orbitals and mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium(II) complex, [Cd(DDTC)2]. Spectrochim. Acta A 2015, 146, 192–203.CrossRefGoogle Scholar
  40. [40]
    Turner, M.; Vaughan, O. P. H.; Kyriakou, G.; Watson, D. J.; Scherer, L. J.; Davidson, G. J. E.; Sanders, J. K. M.; Lambert, R. M. Deprotection, tethering, and activation of a catalytically active metalloporphyrin to a chemically active metal surface: [SAc]4P−Mn(III) Cl on Ag(100). J. Am. Chem. Soc. 2009, 131, 1910–1914.CrossRefGoogle Scholar
  41. [41]
    Battocchio, C.; Meneghini, C.; Fratoddi, I.; Venditti, I.; Russo, M. V.; Aquilanti, G.; Maurizio, C.; Bondino, F.; Matassa, R.; Rossi, M. et al. Silver nanoparticles stabilized with thiols: A close look at the local chemistry and chemical structure. J. Phys. Chem. C 2012, 116, 19571–19578.CrossRefGoogle Scholar
  42. [42]
    Song-im, N.; Benson, S.; Lennard, C. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci. Int. 2012, 222, 102–110.CrossRefGoogle Scholar
  43. [43]
    Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937.CrossRefGoogle Scholar
  44. [44]
    Pierre, M. C. S.; Haes, A. J. Purification implications on SERS activity of silica coated gold nanospheres. Anal. Chem. 2012, 84, 7906–7911.CrossRefGoogle Scholar
  45. [45]
    Shi, Y. E.; Li, L. M.; Yang, M.; Jiang, X. H.; Zhao, Q. Q.; Zhan, J. H. A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 2014, 139, 2525–2530.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Department of ChemistryShandong UniversityJinanChina

Personalised recommendations