Advertisement

Nano Research

, Volume 9, Issue 8, pp 2478–2486 | Cite as

Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths

  • Francesco Sarti
  • Francesco Biccari
  • Federica Fioravanti
  • Ughetta Torrini
  • Anna Vinattieri
  • Vincent Derycke
  • Massimo Gurioli
  • Arianna FiloramoEmail author
Research Article

Abstract

Single wall carbon nanotubes (SWNTs) are known for their exceptional electronic properties. However, most of the synthesis methods lead to the production of a mixture of carbon nanotubes having different chiralities associated with metallic (m-SWNTs) and semiconducting (s-SWNTs) characteristics. For application purposes, effective methods for separating these species are highly desired. Here, we report a protocol for achieving a highly selective separation of s-SWNTs that exhibit a fundamental optical transition centered at 1,550 nm. We employ a polymer assisted sorting approach, and the influence of preparation methods on the optical and transport performances of the separated nanotubes is analyzed. As even traces of m-SWNTs can critically affect performances, we aim to produce samples that do not contain any detectable fraction of residual m-SWNTs.

Keywords

single wall carbon nanotube (SWNT) sorting optical properties field effect transistors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1134_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 2031 KB.

References

  1. [1]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefGoogle Scholar
  2. [2]
    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.CrossRefGoogle Scholar
  3. [3]
    Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.CrossRefGoogle Scholar
  4. [4]
    Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856–6872.CrossRefGoogle Scholar
  5. [5]
    Zeng, Q. S.; Wang, S.; Yang, L. J.; Wang, Z. X.; Zhang, Z. Y.; Peng, L. M.; Zhou, W. Y.; Xie, S. S. Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Res. 2012, 5, 33–42.CrossRefGoogle Scholar
  6. [6]
    Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Nearinfrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.CrossRefGoogle Scholar
  7. [7]
    St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.CrossRefGoogle Scholar
  8. [8]
    Liu, Y.; Wei, N.; Zhao, Q. L.; Zhang, D. H.; Wang, S.; Peng, L. M. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale 2015, 7, 6805–6812.CrossRefGoogle Scholar
  9. [9]
    Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 2004, 4, 1063–1066.CrossRefGoogle Scholar
  10. [10]
    Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow band light emission from a single carbon nanotube p–n diode. Nat. Nanotechnol. 2010, 5, 27–31.CrossRefGoogle Scholar
  11. [11]
    Koyama, T.; Miyata, Y.; Asada, Y.; Shinohara, H.; Kataura, H.; Nakamura, A. Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 2010, 1, 3243–3248.CrossRefGoogle Scholar
  12. [12]
    Koyama, T.; Shimizu, S.; Saito, T.; Miyata, Y.; Shinohara, H.; Nakamura, A. Ultrafast luminescence kinetics of metallic single walled carbon nanotubes: Possible evidence for excitonic luminescence. Phys. Rev. B 2012, 85, 045428.CrossRefGoogle Scholar
  13. [13]
    Grechko, M.; Ye, Y. M.; Mehlenbacher, R. D.; McDonough, T. J.; Wu, M. Y.; Jacobberger, R. M.; Arnold, M. S.; Zanni, M. T. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano 2014, 8, 5383–5394.CrossRefGoogle Scholar
  14. [14]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefGoogle Scholar
  15. [15]
    Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.CrossRefGoogle Scholar
  16. [16]
    Choi, S. J.; Wang, C.; Lo, C. C.; Bennet, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.CrossRefGoogle Scholar
  17. [17]
    Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.CrossRefGoogle Scholar
  18. [18]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefGoogle Scholar
  19. [19]
    Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.CrossRefGoogle Scholar
  20. [20]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  21. [21]
    Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.CrossRefGoogle Scholar
  22. [22]
    Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849–3856.CrossRefGoogle Scholar
  23. [23]
    Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.CrossRefGoogle Scholar
  24. [24]
    Darchy, L.; Hanifi, N.; Vialla, F.; Voisin, C.; Bayle, P. A.; Genovese, L.; Celle, C.; Simonato, J. P.; Filoramo, A.; Derycke, V. et al. A highly selective non radical diazo coupling provides low cost semi conducting carbon nanotubes. Carbon 2014, 66, 246–258.CrossRefGoogle Scholar
  25. [25]
    Yahay, I.; Bonaccorso, F.; Clowes, S. K.; Ferrari, A. C.; Silva, S. R. P. Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon 2015, 93, 574–594.CrossRefGoogle Scholar
  26. [26]
    Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.CrossRefGoogle Scholar
  27. [27]
    Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017.CrossRefGoogle Scholar
  28. [28]
    Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Ijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.CrossRefGoogle Scholar
  29. [29]
    Gaufrès, E.; Izard, N.; Noury, A.; Le Roux, X.; Rasigade, G.; Beck, A.; Vivien, L. Light emission in silicon from carbon nanotubes. ACS Nano 2012, 6, 3813–3819.CrossRefGoogle Scholar
  30. [30]
    Gomulya, W.; Costanzo, G. D.; Figueiredo de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A. et al. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948–2956.CrossRefGoogle Scholar
  31. [31]
    Wang, W. Z.; Li, W. F.; Pan, X. Y.; Li, C. M.; Li, L. J.; Mu, Y. G.; Rogers, J. A.; Chan-Park, M. B. Degradable conjugated polymers: Synthesis and applications in enrichment of semiconducting single-walled carbon nanotubes. Adv. Funct. Mater. 2011, 21, 1643–1651.CrossRefGoogle Scholar
  32. [32]
    Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of semiconducting single-wall carbon nanotubes by poly(9,9-dioctylfluorene-alt-pyridine) for 1.5 μm emission. ACS Appl. Mater. Interfaces 2012, 4, 6458–6462.CrossRefGoogle Scholar
  33. [33]
    Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911.CrossRefGoogle Scholar
  34. [34]
    Zhang, X.; Zhao, J. W.; Tange, M.; Xu, W. Y.; Xu, W. W.; Zhang, K. D.; Guo, W. R.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 2015, 94, 903–910.CrossRefGoogle Scholar
  35. [35]
    Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231–2239.CrossRefGoogle Scholar
  36. [36]
    Yang, H. L.; Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. Diameter-selective dispersion of carbon nanotubes via polymers: A competition between adsorption and bundling. ACS Nano 2015, 9, 9012–9019.CrossRefGoogle Scholar
  37. [37]
    Jost, O.; Gorbunov, A. A.; Möller, J.; Pompe, W.; Graff, A.; Friedlein, R.; Liu, X.; Golden, M. S.; Fink, J. Impact of catalyst coarsening on the formation of single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 339, 297–304.CrossRefGoogle Scholar
  38. [38]
    Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.CrossRefGoogle Scholar
  39. [39]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, J. P.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.CrossRefGoogle Scholar
  40. [40]
    Campoy-Quiles, M.; Etchegoin, P. G.; Bradley, D. D. C. Exploring the potential of ellipsometry for the characterisation of electronic, optical, morphologic and thermodynamic properties of polyfluorene thin films. Synthetic Met. 2005, 155, 279–282.CrossRefGoogle Scholar
  41. [41]
    Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.CrossRefGoogle Scholar
  42. [42]
    Dresselhaus, M. S.; Dresselhaus, G.; Hofmann, M. The big picture of Raman scattering in carbon nanotubes. Vib. Spectrosc. 2007, 45, 71–81.CrossRefGoogle Scholar
  43. [43]
    Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.CrossRefGoogle Scholar
  44. [44]
    Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179–2187.CrossRefGoogle Scholar
  45. [45]
    Bisri, S. Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M. A. High performance ambipolar field-effect transistor of random network carbon nanotubes. Adv. Mater. 2012, 24, 6147–6152.CrossRefGoogle Scholar
  46. [46]
    Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett 2001, 87, 256805.CrossRefGoogle Scholar
  47. [47]
    Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Francesco Sarti
    • 1
  • Francesco Biccari
    • 1
  • Federica Fioravanti
    • 1
  • Ughetta Torrini
    • 1
  • Anna Vinattieri
    • 1
  • Vincent Derycke
    • 2
  • Massimo Gurioli
    • 1
  • Arianna Filoramo
    • 2
    Email author
  1. 1.Department of Physics and LENSUniversity of FlorenceSesto FiorentinoItaly
  2. 2.LICSEN, NIMBE, CEA, CNRSUniversity Paris-Saclay, CEA SaclayGif sur Yvette CEDEXFrance

Personalised recommendations