Advertisement

Nano Research

, Volume 9, Issue 8, pp 2203–2225 | Cite as

A biotechnological perspective on the application of iron oxide nanoparticles

  • Farnaz Assa
  • Hoda Jafarizadeh-MalmiriEmail author
  • Hossein Ajamein
  • Navideh Anarjan
  • Hamideh Vaghari
  • Zahra Sayyar
  • Aydin BerenjianEmail author
Review Article

Abstract

In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.

Keywords

iron oxide nanoparticle superparamagnetic biotechnology surface modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chow, A. Y. Cell cycle control by oncogenes and tumor suppressors: Driving the transformation of normal cells into cancerous cells. Nat. Educ. 2010, 3, 7.Google Scholar
  2. [2]
    Alharbi, K. K.; Al-sheikh, Y. A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci. 2014, 21, 109–117.CrossRefGoogle Scholar
  3. [3]
    Naeimi, H.; Nazifi, Z. S.; Amininezhad, S. M. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity. J. Photochem. Photobiol. B 2015, 149, 180–188.CrossRefGoogle Scholar
  4. [4]
    Shamili, K.; Rajesh, E. M.; Rajendran, R.; Madhan Shankar, S. R.; Elango, M.; Abitha Devi, N. Colloidal stability and monodispersible magnetic iron oxide nanoparticles in biotechnology application. Int. J. Nanosci. 2013, 12, 1330002.CrossRefGoogle Scholar
  5. [5]
    Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305.CrossRefGoogle Scholar
  6. [6]
    Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; Wiley: New York, 2007.Google Scholar
  7. [7]
    Dobrzański, L. A.; Drak, M.; Ziębowicz, B. Materials with specific magnetic properties. J. Achiev. Mater. Manuf. Eng. 2006, 17, 37–40.Google Scholar
  8. [8]
    Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R. K.; Biyani, N.; Jain, V. K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxic. Rep. 2015, 2, 27–39.CrossRefGoogle Scholar
  9. [9]
    Shubayev, V. I.; Pisanic, T. R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009, 61, 467–477.CrossRefGoogle Scholar
  10. [10]
    Hoskins, C.; Wang, L. J.; Cheng, W. P.; Cuschieri, A. Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: Which tests and what protocols? Nanoscale Res. Lett. 2012, 7, 77.CrossRefGoogle Scholar
  11. [11]
    Hoskins, C.; Cuschieri, A.; Wang, L. J. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J. Nanobiotechnology 2012, 10, 15.CrossRefGoogle Scholar
  12. [12]
    Mak, S.-Y.; Chen, D.-H. Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: A novel, magnetic, strong acid cation nano-adsorbent. Macromol. Rapid Commun. 2005, 26, 1567–1571.CrossRefGoogle Scholar
  13. [13]
    Li, L.; Mak, K. Y.; Shi, J.; Leung, C. H.; Wong, C. M.; Leung, C. W.; Mak, C. S. K.; Chan, K. Y.; Chan, N. M. M.; Wu, E. X. et al. Sterilization on dextran-coated iron oxide nanoparticles: Effects of autoclaving, filtration, UV irradiation, and ethanol treatment. Microelectron. Eng. 2013, 111, 310–313.CrossRefGoogle Scholar
  14. [14]
    Wang, X. L.; Zhou, L. Z.; Ma, Y. J.; Li, X.; Gu, H. C. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2009, 2, 365–372.CrossRefGoogle Scholar
  15. [15]
    Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. H. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001, 17, 2900–2906.CrossRefGoogle Scholar
  16. [16]
    Mendes, R. G.; Koch, B.; Bachmatiuk, A.; El-Gendy, A. A.; Krupskaya, Y.; Springer, A.; Klingeler, R.; Schmidt, O.; Büchner, B.; Sanchez, S. et al. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim. Biophys. Acta 2014, 1840, 160–169.CrossRefGoogle Scholar
  17. [17]
    Mandal, M.; Kundu, S.; Ghosh, S. K.; Panigrahi, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005, 286, 187–194.CrossRefGoogle Scholar
  18. [18]
    Machala, L.; Tuček, J.; Zbořil, R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011, 23, 3255–3272.CrossRefGoogle Scholar
  19. [19]
    Tuček, J.; Zbořil, R.; Namai, A.; Ohkoshi, S.-I. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 2010, 22, 6483–6505.CrossRefGoogle Scholar
  20. [20]
    Tuček, J.; Kemp, K. C.; Kim, K. S.; Zbořil, R. Iron-oxidesupported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014, 8, 7571–7612.CrossRefGoogle Scholar
  21. [21]
    Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.CrossRefGoogle Scholar
  22. [22]
    Philosof-Mazor, L.; Dakwar, G. R.; Popov, M.; Kolusheva, S.; Shames, A.; Linder, C.; Greenberg, S.; Heldman, E.; Stepensky, D.; Jelinek, R. Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. Int. J. Pharm. 2013, 450, 241–249.CrossRefGoogle Scholar
  23. [23]
    Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.CrossRefGoogle Scholar
  24. [24]
    Hilger, I.; Hergt, R.; Kaiser, W. A. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc. Nanobiotechnol. 2005, 152, 33–39.CrossRefGoogle Scholar
  25. [25]
    Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter. 2006, 18, S2919–S2934.Google Scholar
  26. [26]
    Gneveckow, U.; Jordan, A.; Scholz, R.; Cho, C. H.; Feuβner, A.; Eckelt, L.; Wust, P. Magnetic force nanotherapy: Feasibility and tolerance in a trial with residual tumors. In Proceedings 22nd Annual Meeting of the European Society for Hyperthermic Oncology, Graz, Austria, 2005, pp 29–30.Google Scholar
  27. [27]
    Chen, Y.; Chen, B.-A. Application and development of magnetic iron oxide nanoparticles in tumor targeted therapy. Chin. J. Cancer 2010, 29, 118–122.CrossRefGoogle Scholar
  28. [28]
    Liu, Y. L.; Tan, J. F.; Thomas, A.; Ouyang, D.; Muzykantov, V. R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv. 2012, 3, 181–194.CrossRefGoogle Scholar
  29. [29]
    Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607.CrossRefGoogle Scholar
  30. [30]
    Khanna, V. K. Targeted delivery of nanomedicines. ISRN Pharmacol. 2012, 2012, 571394.Google Scholar
  31. [31]
    Wu, Z. H.; Yang, S. L.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237–1259.CrossRefGoogle Scholar
  32. [32]
    Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 44.CrossRefGoogle Scholar
  33. [33]
    Hasany, S. F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2012, 2, 148–158.CrossRefGoogle Scholar
  34. [34]
    Guardia, P.; Pérez, N.; Labarta, A.; Batlle, X. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 2010, 26, 5843–5847.CrossRefGoogle Scholar
  35. [35]
    Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y. J.; Zamboulis, D.; Van Tendeloo, G. Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 2014, 118, 16209–16217.CrossRefGoogle Scholar
  36. [36]
    Ray, J. R.; Wan, W.; Gilbert, B.; Jun, Y.-S. Effects of formation conditions on the physicochemical properties, aggregation, and phase transformation of iron oxide nanoparticles. Langmuir 2013, 29, 1069–1076.CrossRefGoogle Scholar
  37. [37]
    Qiao, R. R.; Yang, C. H.; Gao, M. Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293.CrossRefGoogle Scholar
  38. [38]
    Wu, W.; Jiang, C. Z.; Roy, V. A. L. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 2015, 7, 38–58.Google Scholar
  39. [39]
    Yoo, J. Y.; Kim, Y.; Ko, Y. S. Ring-opening polymerization behavior of L-lactide catalyzed by aluminum alkyl catalysts. J. Ind. Eng. Chem. 2013, 19, 1137–1143.CrossRefGoogle Scholar
  40. [40]
    Levy, L.; Sahoo, Y.; Kim, K.-S.; Bergey, E. J.; Prasad, P. N. Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002, 14, 3715–3721.CrossRefGoogle Scholar
  41. [41]
    Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 2004, 16, 3489–3496.CrossRefGoogle Scholar
  42. [42]
    Hong, S. K.; Ma, J. Y.; Kim, J.-C. Preparation of iron oxide nanoparticles within monoolein cubic phase. J. Ind. Eng. Chem. 2012, 18, 1977–1982.CrossRefGoogle Scholar
  43. [43]
    Yoffe, S.; Leshuk, T.; Everett, P.; Gu, F. Superparamagnetic iron oxide nanoparticles (SPIONs): Synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr. Pharm. Des. 2013, 19, 493–509.CrossRefGoogle Scholar
  44. [44]
    Kumar, R. V.; Koltypin, Y.; Xu, X. N.; Yeshurun, Y.; Gedanken, A.; Felner, I. Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 2001, 89, 6324–6328.CrossRefGoogle Scholar
  45. [45]
    Vijayakumar, R.; Koltypin, Y.; Felner, I.; Gedanken, A. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A 2000, 286, 101–105.CrossRefGoogle Scholar
  46. [46]
    Dang, F.; Enomoto, N.; Hojo, J.; Enpuku, K. A novel method to synthesize monodispersed magnetite nanoparticles. Chem. Lett. 2008, 37, 530–531.CrossRefGoogle Scholar
  47. [47]
    Wu, W.; He, Q. G.; Jiang, C. Z. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397–415.CrossRefGoogle Scholar
  48. [48]
    Pascal, C.; Pascal, J. L.; Favier, F.; Elidrissi Moubtassim, M. L.; Payen, C. Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater. 1999, 11, 141–147.CrossRefGoogle Scholar
  49. [49]
    Khollam, Y. B.; Dhage, S. R.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Kulkarni, S. D.; Date, S. K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 2002, 56, 571–577.CrossRefGoogle Scholar
  50. [50]
    Gržeta, B.; Ristić, M.; Nowik, I.; Musić, S. Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate. J. Alloys Compd. 2002, 334, 304–312.CrossRefGoogle Scholar
  51. [51]
    Narasimhan, B. R. V.; Prabhakar, S.; Manohar, P.; Gnanam, F. D. Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate. Mater. Lett. 2002, 52, 295–300.CrossRefGoogle Scholar
  52. [52]
    Yu, W. W.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 2306–2307.Google Scholar
  53. [53]
    Liu, X.-M.; Kim, J.-K. Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater. Lett. 2009, 63, 428–430.CrossRefGoogle Scholar
  54. [54]
    Maity, D.; Choo, S.-G.; Yi, J. B.; Ding, J.; Xue, J. M. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 2009, 321, 1256–1259.CrossRefGoogle Scholar
  55. [55]
    Amemiya, Y.; Arakaki, A.; Staniland, S. S.; Tanaka, T.; Matsunaga, T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 2007, 28, 5381–5389.CrossRefGoogle Scholar
  56. [56]
    Philipse, A. P.; Maas, D. Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir 2002, 18, 9977–9984.CrossRefGoogle Scholar
  57. [57]
    Prozorov, T.; Mallapragada, S. K.; Narasimhan, B.; Wang, L.; Palo, P.; Nilsen-Hamilton, M.; Williams, T. J.; Bazylinski, D. A.; Prozorov, R.; Canfield, P. C. Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 2007, 17, 951–957.CrossRefGoogle Scholar
  58. [58]
    Bharde, A. A.; Parikh, R. Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B. L. V.; Shouche, Y. S.; Ogale, S.; Sastry, M. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 2008, 24, 5787–5794.CrossRefGoogle Scholar
  59. [59]
    Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S. M.; Sanyal, M.; Sastry, M. Extracellular biosynthesis of magnetite using fungi. Small 2006, 2, 135–141.CrossRefGoogle Scholar
  60. [60]
    Coker, V. S.; Telling, N. D.; van der Laan, G.; Pattrick, R. A. D.; Pearce, C. I.; Arenholz, E.; Tuna, F.; Winpenny, R. E. P.; Lloyd, J. R. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano 2009, 3, 1922–1928.CrossRefGoogle Scholar
  61. [61]
    Itoh, H.; Sugimoto, T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 2003, 265, 283–295.CrossRefGoogle Scholar
  62. [62]
    Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455.CrossRefGoogle Scholar
  63. [63]
    Peng, Z. M.; Wu, M. Z.; Xiong, Y.; Wang, J.; Chen, Q. W. Synthesis of magnetite nanorods through reduction of β-FeOOH. Chem. Lett. 2005, 34, 636–637.CrossRefGoogle Scholar
  64. [64]
    Jia, C.-J.; Sun, L.-D.; Luo, F.; Han, X.-D.; Heyderman, L. J.; Yan, Z.-G.; Yan, C.-H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.CrossRefGoogle Scholar
  65. [65]
    Wu, W.; Wu, Z. H.; Yu, T.; Jiang, C. Z.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Tech. Adv. Mater. 2015, 16, 023501.CrossRefGoogle Scholar
  66. [66]
    Dias, A. M. G. C.; Hussain, A.; Marcos, A. S.; Roque, A. C. A. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 2011, 29, 142–155.CrossRefGoogle Scholar
  67. [67]
    Kim, S.; Kim, J.-H.; Jeon, O.; Kwon, I. C.; Park, K. Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 2009, 71, 420–430.CrossRefGoogle Scholar
  68. [68]
    Kim, J.-E.; Shin, J.-Y.; Cho, M.-H. Magnetic nanoparticles: An update of application for drug delivery and possible toxic effects. Arch. Toxicol. 2012, 86, 685–700.CrossRefGoogle Scholar
  69. [69]
    Xu, J.-K.; Zhang, F.-F.; Sun, J.-J.; Sheng, J.; Wang, F.; Sun, M. Bio and nanomaterials based on Fe3O4. Molecules 2014, 19, 21506–21528.CrossRefGoogle Scholar
  70. [70]
    Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46.CrossRefGoogle Scholar
  71. [71]
    Wang, Y.; Wong, J. F.; Teng, X. W.; Lin, X. Z.; Yang, H. “Pulling” nanoparticles into water: Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 2003, 3, 1555–1559.CrossRefGoogle Scholar
  72. [72]
    Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.CrossRefGoogle Scholar
  73. [73]
    Gupta, A. K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 2004, 3, 66–73.CrossRefGoogle Scholar
  74. [74]
    Sen, T.; Magdassi, S.; Nizri, G.; Bruce, I. J. Dispersion of magnetic nanoparticles in suspension. Micro Nano Lett. 2006, 1, 39–42.CrossRefGoogle Scholar
  75. [75]
    Euliss, L. E.; Grancharov, S. G.; O'Brien, S.; Deming, T. J.; Stucky, G. D.; Murray, C. B.; Held, G. A. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett. 2003, 3, 1489–1493.CrossRefGoogle Scholar
  76. [76]
    Park, K. C.; Wang, F.; Morimoto, S.; Fujishige, M.; Morisako, A.; Liu, X. X.; Kim, Y. J.; Jung, Y. C.; Jang, I. Y.; Endo, M. One pot synthesis of iron oxide-carbon core-shell particles in supercritical water. Mater. Res. Bull. 2009, 44, 1443–1450.CrossRefGoogle Scholar
  77. [77]
    Wang, Y.; Teng, X. W.; Wang, J.-S.; Yang, H. Solventfree atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles. Nano Lett. 2003, 3, 789–793.CrossRefGoogle Scholar
  78. [78]
    Li, G. F.; Fan, J. D.; Jiang, R.; Gao, Y. Cross-linking the linear polymeric chains in the ATRP synthesis of iron oxide/polystyrene core/shell nanoparticles. Chem. Mater. 2004, 16, 1835–1837.CrossRefGoogle Scholar
  79. [79]
    Wan, S. R.; Zheng, Y. E.; Liu, Y. Q.; Yan, H. S.; Liu, K. L. Fe3O4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers. J. Mater. Chem. 2005, 15, 3424–3430.CrossRefGoogle Scholar
  80. [80]
    Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; St. Pierre, T. G.; Saunders, M. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater. 2003, 15, 1367–1377.CrossRefGoogle Scholar
  81. [81]
    Gómez-Lopera, S. A.; Plaza, R. C.; Delgado, A. V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 2001, 240, 40–47.CrossRefGoogle Scholar
  82. [82]
    Voit, W.; Kim, D. K.; Zapka, W.; Muhammed, M.; Rao, K. V. Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. In MRS Proceedings: Synthesis, Functional Properties and Applications of Nanostructures, San Francisco, USA, 2001.Google Scholar
  83. [83]
    Sen, T.; Bruce, I. J. Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences. Micropor. Mesopor. Mater. 2009, 120, 246–251.CrossRefGoogle Scholar
  84. [84]
    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O. Sizecontrolled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J. Magn. Magn. Mater. 2012, 324, 3997–4005.CrossRefGoogle Scholar
  85. [85]
    Ladj, R.; Bitar, A.; Eissa, M.; Mugnier, Y.; Le Dantec, R.; Fessi, H.; Elaissari, A. Individual inorganic nanoparticles: Preparation, functionalization and in vitro biomedical diagnostic applications. J. Mater. Chem. B 2013, 1, 1381–1396.CrossRefGoogle Scholar
  86. [86]
    Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501.CrossRefGoogle Scholar
  87. [87]
    Da Dalt, S.; Panta, P. C.; Toniolo, J. C. Nanomagnetic materials. In Nanostructured Materials for Engineering Applications. Bergmann, C.; de Andrade, M., Eds.; Springer: Berlin Heidelberg, 2011; pp 23–39.CrossRefGoogle Scholar
  88. [88]
    Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 2010, 7, 1–37.CrossRefGoogle Scholar
  89. [89]
    Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Ed.; Wiley-VCH: Weinheim, 2003.CrossRefGoogle Scholar
  90. [90]
    Lam, U. T.; Mammucari, R.; Suzuki, K.; Foster, N. R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res. 2008, 47, 599–614.CrossRefGoogle Scholar
  91. [91]
    Mody, V. V.; Siwale, R.; Singh, A.; Mody, H. R. Introduction to metallic nanoparticles. J. Pharm. Bioall. Sci. 2010, 2, 282–289.CrossRefGoogle Scholar
  92. [92]
    Gawande, M. B.; Branco, P. S.; Varma, R. S. Nanomagnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.CrossRefGoogle Scholar
  93. [93]
    Amirkhani, L.; Moghaddas, J; Jafarizadeh-Malmiri, H. Candida rugosalipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv. 2016, 6, 12676–12678.CrossRefGoogle Scholar
  94. [94]
    Xu, J. K.; Sun, J. J.; Wang, Y. J.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19, 11465–11486.CrossRefGoogle Scholar
  95. [95]
    Cao, M.; Li, Z. H.; Wang, J. L.; Ge, W. P.; Yue, T. L.; Li, R. H.; Colvin, V. L.; Yu, W. W. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Tech. 2012, 27, 47–56.CrossRefGoogle Scholar
  96. [96]
    Li, S.; Yang, X. F.; Yang, S.; Zhu, M. Z.; Wang, X. N. Technology prospecting on enzymes: Application, marketing and engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209017.Google Scholar
  97. [97]
    Singh, R. K.; Tiwari, M. K.; Singh, R.; Lee, J.-K. From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 2013, 14, 1232–1277.CrossRefGoogle Scholar
  98. [98]
    Jafarizadeh-Malmiri, H.; Ghaz-Jahanian, M. A.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol. 2012, 8, 203–219.CrossRefGoogle Scholar
  99. [99]
    Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10.CrossRefGoogle Scholar
  100. [100]
    Tang, W.-W.; Zeng, G.-M.; Gong, J.-L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.-B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468–469, 1014–1027.CrossRefGoogle Scholar
  101. [101]
    Xu, P.; Zeng, G. M.; Huang, D. L.; Lai, C.; Zhao, M. H.; Wei, Z.; Li, N. J.; Huang, C.; Xie, G. X. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J. 2012, 203, 423–431.CrossRefGoogle Scholar
  102. [102]
    Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 2016, 38, 223–233.CrossRefGoogle Scholar
  103. [103]
    Colombié, S.; Gaunand, A.; Lindet, B. Lysozyme inactivation under mechanical stirring: Effect of physical and molecular interfaces. Enzyme Microb. Technol. 2001, 28, 820–826.CrossRefGoogle Scholar
  104. [104]
    Wu, H.; Fan, Y.; Sheng, J.; Sui, S.-F. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. Eur. Biophys. J. 1993, 22, 201–205.CrossRefGoogle Scholar
  105. [105]
    Liu, Y.; Jia, S. Y.; Wu, Q.; Ran, J. Y.; Zhang, W.; Wu, S. H. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal. Commun. 2011, 12, 717–720.CrossRefGoogle Scholar
  106. [106]
    Zhao, G. X.; Wen, T.; Yang, X.; Yang, S. B.; Liao, J. L.; Hu, J.; Shao, D. D.; Wang, X. K. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 2012, 41, 6182–6188.CrossRefGoogle Scholar
  107. [107]
    Zong, P. F.; Wang, S. F.; Zhao, Y. L.; Wang, H.; Pan, H.; He, C. H. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 2013, 220, 45–52.CrossRefGoogle Scholar
  108. [108]
    Rodrigo, G.; Gruvegård, M.; van Alstine, J. M. Antibody fragments and their purification by protein L affinity chromatography. Antibodies 2015, 4, 259–277.CrossRefGoogle Scholar
  109. [109]
    Martínez-Maqueda, D.; Hernández-Ledesma, B.; Amigo, L.; Miralles, B.; Gómez-Ruiz, J. Extraction/fractionation techniques for proteins and peptides and protein digestion. In Proteomics in Foods. Toldrá, F.; Nollet, L. M. L., Eds.; Springer: New York, 2013; pp 21–50.CrossRefGoogle Scholar
  110. [110]
    Ghotb, S. A.; Chamani, M.; Ahmadpanahi, H.; Sadeghi, A. A. Xylanase extraction from clarified rumen fluid by modified magnetic nano-particles. WALIA J. 2014, 30, 121–127.Google Scholar
  111. [111]
    Bucak, S.; Jones, D. A.; Laibinis, P. E.; Hatton, T. A. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 477–484.CrossRefGoogle Scholar
  112. [112]
    Okoli, C.; Boutonnet, M.; Mariey, L.; Järås, S.; Rajarao, G. Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification. J. Chem. Technol. Biotechnol. 2011, 86, 1386–1393.CrossRefGoogle Scholar
  113. [113]
    Boutonnet, M.; Lögdberg, S.; Elm Svensson, E. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 2008, 13, 270–286.CrossRefGoogle Scholar
  114. [114]
    Eriksson, S.; Nylén, U.; Rojas, S.; Boutonnet, M. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A 2004, 265, 207–219.CrossRefGoogle Scholar
  115. [115]
    Lu, A.-H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Edit. 2007, 46, 1222–1244.CrossRefGoogle Scholar
  116. [116]
    Othman, M. N.; Abdullah, M. P.; Aziz, Y. F. A. Removal of aluminium from drinking water. Sains Malays. 2010, 39, 51–55.Google Scholar
  117. [117]
    Lindström, E. S.; Kamst-Van Agterveld, M. P.; Zwart, G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 2005, 71, 8201–8206.CrossRefGoogle Scholar
  118. [118]
    Lakshmanan, R.; Okoli, C.; Boutonnet, M.; Järås, S.; Rajarao, G. K. Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes. Bioresour. Technol. 2013, 129, 612–615.CrossRefGoogle Scholar
  119. [119]
    Plante, M.-P.; Bérubé, È.; Bissonnette, L.; Bergeron, M. G.; Leclerc, M. Polythiophene biosensor for rapid detection of microbial particles in water. ACS Appl. Mater. Interfaces 2013, 5, 4544–4548.CrossRefGoogle Scholar
  120. [120]
    Sahu, O. P.; Chaudhari, P. K. Review on chemical treatment of industrial waste water. J. Appl. Sci. Environ. Manage. 2013, 17, 241–257.Google Scholar
  121. [121]
    Kawahara, M.; Kato-Negishi, M. Link between aluminum and the pathogenesis of alzheimer's disease: The integration of the aluminum and amyloid cascade hypotheses. Int. J. Alzheimer’s Dis. 2011, 2011, Article ID 276393.Google Scholar
  122. [122]
    White, B. R.; Stackhouse, B. T.; Holcombe, J. A. Magnetic γ-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J. Hazard. Mater. 2009, 161, 848–853.CrossRefGoogle Scholar
  123. [123]
    Girginova, P. I.; Daniel-da-Silva, A. L.; Lopes, C. B.; Figueira, P.; Otero, M.; Amaral, V. S.; Pereira, E.; Trindade, T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci. 2010, 345, 234–240.CrossRefGoogle Scholar
  124. [124]
    Cheng, Z. L.; Tan, A. L. K.; Tao, Y.; Shan, D.; Ting, K. E.; Yin, X. J. Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. Int. J. Photoenergy 2012, 2012, Article ID 608298.Google Scholar
  125. [125]
    Rahman, M. M.; Khan, S. B.; Jamal, A.; Faisal, M.; Aisiri, A. M. Iron Oxide Nanoparticles; InTech Open Access Publisher: Vienna, 2011.Google Scholar
  126. [126]
    Vashist, S. K.; Lam, E.; Hrapovic, S.; Male, K. B.; Luong, J. H. T. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 2014, 114, 11083–11130.CrossRefGoogle Scholar
  127. [127]
    Omidinia, E.; Shadjou, N.; Hasanzadeh, M. (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mater. Sci. Eng. C 2013, 33, 4624–4632.CrossRefGoogle Scholar
  128. [128]
    Jaffrezic-Renault, N.; Martelet, C.; Chevolot, Y.; Cloarec, J. P. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors (Basel) 2007, 7, 589–614.CrossRefGoogle Scholar
  129. [129]
    Hsing, I. M.; Xu, Y.; Zhao, W. T. Micro- and nanomagnetic particles for applications in biosensing. Electroanalysis 2007, 19, 755–768.CrossRefGoogle Scholar
  130. [130]
    Stanciu, L.; Won, Y. H.; Ganesana, M.; Andreescu, S. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 2009, 9, 2976–2999.CrossRefGoogle Scholar
  131. [131]
    Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. 2015, 72, 1–9.CrossRefGoogle Scholar
  132. [132]
    Silva, A.; Silva-Freitas, É.; Carvalho, J.; Pontes, T.; Araújo-Neto, R.; Silva, K.; Carriço, A.; Egito, E. Magnetic Particles in Biotechnology: From Drug Targeting to Tissue Engineering; InTech Open Access Publisher: Vienna, 2012.Google Scholar
  133. [133]
    Varanda, L. C.; Júnior, M. J.; Júnior, W. B. Magnetic and multifunctional magnetic nanoparticles in nanomedicine: Challenges and trends in synthesis and surface engineering for diagnostic and therapy applications. In Biomedical Engineering, Trends in Materials Science. Laskovski, A. N., Eds.; InTech Open Accsess Publisher: Vienna, 2011; pp 397–424.Google Scholar
  134. [134]
    Amritkar, A. S.; Chaudhari, H. S.; Narkhede, D. A.; Jain, D. K.; den Baviskar, D. T. Nanotechnology for biomedical application. Int. J. Pharm. Sci. Rev. Res. 2011, 8, 45–53.Google Scholar
  135. [135]
    Medeiros, S. F.; Santos, A. M.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 2011, 403, 139–161.CrossRefGoogle Scholar
  136. [136]
    Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M. A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101.CrossRefGoogle Scholar
  137. [137]
    Huang, J.; Zhong, X. D.; Wang, L. Y.; Yang, L. L.; Mao, H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2012, 2, 86–102.CrossRefGoogle Scholar
  138. [138]
    Hervault, A.; Thanh, N. T. K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573.CrossRefGoogle Scholar
  139. [139]
    Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808.CrossRefGoogle Scholar
  140. [140]
    Jalilian, A.; Panahifar, A.; Mahmoudi, M.; Akhlaghi, M.; Simchi, A. Preparation and biological evaluation of [67 Ga]-labeled-superparamagnetic nanoparticles in normal rats. Radiochim. Acta 2009, 97, 51–56.CrossRefGoogle Scholar
  141. [141]
    Sailaja, A. K. Formulation of magnetic nanoparticles and their applications. Inov. J. Life Sci. 2013, 1, 6–9.Google Scholar
  142. [142]
    Khoee, S.; Bagheri, Y.; Hashemi, A. Composition controlled synthesis of PCL-PEG Janus nanoparticles: Magnetite nanoparticles prepared from one-pot photo-click reaction. Nanoscale 2015, 7, 4134–4148.CrossRefGoogle Scholar
  143. [143]
    Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci. 2014, 62, 243–250.CrossRefGoogle Scholar
  144. [144]
    Ebrahiminezhad, A.; Varma, V.; Yang, S. Y.; Berenjian, A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl. Microbiol. Biotechnol. 2016, 100, 173–180.CrossRefGoogle Scholar
  145. [145]
    Felton, C.; Karmakar, A.; Gartia, Y.; Ramidi, P.; Biris, A. S.; Ghosh, A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metabol. Rev. 2014, 46, 142–154.CrossRefGoogle Scholar
  146. [146]
    Ghaz-Jahanian, M. A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol. 2015, 57, 201–218.CrossRefGoogle Scholar
  147. [147]
    Assa, F.; Jafarizadeh-Malmiri, H.; Anarjan, N.; Berenjian, A.; Ghasemi, Y. Applications of chitosan nanoparticles in active biodegradable and sustainable food packaging. In Renewable Energy and Sustainable Development. Prabhakaran, R. T. D.; Kale, S. A.; Prabakar, K., Eds.; Nova Science Publishers, Inc.: New York, 2015; pp 227–244.Google Scholar
  148. [148]
    Najafi, S.; Pazhouhnia, Z.; Ahmadi, O.; Berenjian, A.; Jafarizadeh-Malmiri, H. Chitosan nanoparticles and their applications in drug delivery: A review. Curr. Res. Drug Discov. 2014, 1, 17–25.CrossRefGoogle Scholar
  149. [149]
    Chen, J.-P.; Yang, P.-C.; Ma, Y.-H.; Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym. 2011, 84, 364–372.CrossRefGoogle Scholar
  150. [150]
    Yang, F.; Gu, Z.-X.; Jin, X.; Wang, H.-Y.; Gu, N. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics. Chin. Phys. B 2013, 22, 104301–104312.CrossRefGoogle Scholar
  151. [151]
    Hałupka-Bryl, M. Synthesis and evaluation of superparamagnetic iron oxide nanoparticles containing doxorubicin as a potential targeted drug delivery system. Ph. D. Dissertation, Adam Mickiewicz University, Poznań, Poland, 2013.Google Scholar
  152. [152]
    Ramírez, L. Magnetite (Fe3O4) nanoparticles: Are they really safe? La Granja 2015, 21, 77–83.CrossRefGoogle Scholar
  153. [153]
    Paci, A.; Veal, G.; Bardin, C.; Levêque, D.; Widmer, N.; Beijnen, J.; Astier, A.; Chatelut, E. Review of therapeutic drug monitoring of anticancer drugs part 1—Cytotoxics. Eur. J. Cancer 2014, 50, 2010–2019.CrossRefGoogle Scholar
  154. [154]
    Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 2015, 496, 191–218.CrossRefGoogle Scholar
  155. [155]
    Hayek, S.; Chen, C.-J.; Haik, Y.; Mohite, V. Application of nanomagnetic particles in hyperthermia cancer treatment. Nanotech 2006, 2, 67–70.Google Scholar
  156. [156]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.CrossRefGoogle Scholar
  157. [157]
    Ma, Z. Y.; Liu, H. Z. Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuol. 2007, 5, 1–10.CrossRefGoogle Scholar
  158. [158]
    Zeisberger, M.; Dutz, S.; Müller, R.; Hergt, R.; Matoussevitch, N.; Bönnemann, H. Metallic cobalt nanoparticles for heating applications. J. Magn. Magn. Mater. 2007, 311, 224–227.CrossRefGoogle Scholar
  159. [159]
    Li, B.; Du, Y.; Yang, H. F.; Huang, Y. Y.; Meng, J.; Xiao, D. M. Magnetic resonance imaging for prostate cancer clinical application. Chin. J. Cancer Res. 2013, 25, 240–249.Google Scholar
  160. [160]
    Stephen, Z. R.; Kievit, F. M.; Zhang, M. Q. Magnetite nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338.CrossRefGoogle Scholar
  161. [161]
    Shokrollahi, H. Contrast agents for MRI. Mater. Sci. Eng. C 2013, 33, 4485–4497.CrossRefGoogle Scholar
  162. [162]
    Szpak, A.; Kania, G.; Skórka, T.; Tokarz, W.; Zapotoczny, S.; Nowakowska, M. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J. Nanopart. Res. 2013, 15, 1372.CrossRefGoogle Scholar
  163. [163]
    Tang, M. F.; Lei, L.; Guo, S. R.; Huang, W. L. Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer 2010, 29, 775–780.CrossRefGoogle Scholar
  164. [164]
    Yuan, A. H.; Wu, J. H.; Tang, X. L.; Zhao, L. L.; Xu, F.; Hu, Y. Q. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 2013, 102, 6–28.CrossRefGoogle Scholar
  165. [165]
    Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 15, 53–72.CrossRefGoogle Scholar
  166. [166]
    Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.CrossRefGoogle Scholar
  167. [167]
    Song, J.; Qu, J. L.; Swihart, M. T.; Prasad, P. N. Near-IR responsive nanostructures for nanobiophotonics: Emerging impacts on nanomedicine. Nanomed. Nanotech. Biol. Med. 2016, 12, 771–788.CrossRefGoogle Scholar
  168. [168]
    Bayazitoglu, Y.; Kheradmand, S.; Tullius, T. K. An overview of nanoparticle assisted laser therapy. Int. J. Heat Mass Tran. 2013, 67, 469–486.CrossRefGoogle Scholar
  169. [169]
    Timothy, A. L.; James, B.; Jesse, A.; Konstantin, S. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18, 325101.CrossRefGoogle Scholar
  170. [170]
    Melancon, M. P.; Elliott, A.; Ji, X. J.; Shetty, A.; Yang, Z.; Tian, M.; Taylor, B.; Stafford, R. J.; Li, C. Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and t2* magnetic resonance imaging. Invest. Radiol. 2011, 46, 132–140.CrossRefGoogle Scholar
  171. [171]
    Paur, H.-R.; Cassee, F. R.; Teeguarden, J.; Fissan, H.; Diabate, S.; Aufderheide, M.; Kreyling, W. G.; Hänninen, O.; Kasper, G.; Riediker, M. et al. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol Sci. 2011, 42, 668–692.CrossRefGoogle Scholar
  172. [172]
    Szalay, B. Iron oxide nanoparticles and their toxicological effects in vivo and in vitro studies. Ph. D. Dissertation, University of Szeged, Szeged, Hungary, 2012.Google Scholar
  173. [173]
    Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev. 2012, 112, 2323–2338.CrossRefGoogle Scholar
  174. [174]
    Malvindi, M. A.; de Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G. C.; Athanassiou, A.; Cingolani, R.; Pompa, P. P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 2014, 9, e85835.CrossRefGoogle Scholar
  175. [175]
    Buyukhatipoglu, K.; Clyne, A. M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A 2011, 96A, 186–195.CrossRefGoogle Scholar
  176. [176]
    Corwin, M. T.; Fananapazir, G.; Chaudhari, A. J. MR angiography of renal transplant vasculature with ferumoxytol: Comparison of high-resolution steady-state and first-pass acquisitions. Acad. Radiol. 2016, 23, 368–373.CrossRefGoogle Scholar
  177. [177]
    Chen, X.; Ramström, O.; Yan, M. D. Glyconanomaterials: Emerging applications in biomedical research. Nano Res. 2014, 7, 1381–1403.CrossRefGoogle Scholar
  178. [178]
    Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res. 2009, 2, 955–965.CrossRefGoogle Scholar
  179. [179]
    Kadota, S.-I.; Kanayama, T.; Miyajima, N.; Takeuchi, K.; Nagata, K. Enhancing of measles virus infection by magnetofection. J. Virol. Methods 2005, 128, 61–66.CrossRefGoogle Scholar
  180. [180]
    Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process. 2013, 1, 16.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Farnaz Assa
    • 1
  • Hoda Jafarizadeh-Malmiri
    • 1
    Email author
  • Hossein Ajamein
    • 2
  • Navideh Anarjan
    • 3
  • Hamideh Vaghari
    • 1
  • Zahra Sayyar
    • 1
  • Aydin Berenjian
    • 4
    Email author
  1. 1.Faculty of Chemical EngineeringSahand University of TechnologyTabrizIran
  2. 2.Department of Chemical Engineering, Ilkhchi BranchIslamic Azad UniversityIlkhchiIran
  3. 3.Department of Chemical Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran
  4. 4.School of Engineering, Faculty of Science and EngineeringUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations