Nano Research

, Volume 9, Issue 8, pp 2445–2457 | Cite as

Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

  • Jiashen Meng
  • Chaojiang Niu
  • Xiong Liu
  • Ziang Liu
  • Hongliang Chen
  • Xuanpeng Wang
  • Jiantao Li
  • Wei Chen
  • Xuefeng GuoEmail author
  • Liqiang MaiEmail author
Research Article


Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube-in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh·g−1 at a high rate of 2 A·g−1, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.


interface-modulated approach multilevel nanotubes metal oxide lithium-ion battery (LIB) oxygen reduction reaction (ORR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1130_MOESM1_ESM.pdf (3.5 mb)
Supplementary material, approximately 3619 KB.


  1. [1]
    Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.CrossRefGoogle Scholar
  2. [2]
    Li, J.; Tang, S. B.; Lu, L.; Zeng, H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 2007, 129, 9401–9409.CrossRefGoogle Scholar
  3. [3]
    Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.CrossRefGoogle Scholar
  4. [4]
    Wang, J.; Li, K.; Zhong, H. X.; Xu, D.; Wang, Z. L.; Jiang, Z.; Wu, Z. J.; Zhang, X. B. Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. 2015, 54, 10530–10534.CrossRefGoogle Scholar
  5. [5]
    Hu, L. B.; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 2011, 5, 8904–8913.CrossRefGoogle Scholar
  6. [6]
    Mou, F. Z.; Guan, J. G.; Shi, W. D.; Sun, Z. G.; Wang, S. H. Oriented contraction: A facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures. Langmuir 2010, 26, 15580–15585.CrossRefGoogle Scholar
  7. [7]
    Yu, W. J.; Liu, C.; Hou, P. X.; Zhang, L. L.; Shan, X. Y.; Li, F.; Cheng, H. M. Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 2015, 9, 5063–5071.CrossRefGoogle Scholar
  8. [8]
    Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.CrossRefGoogle Scholar
  9. [9]
    Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.CrossRefGoogle Scholar
  10. [10]
    Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.CrossRefGoogle Scholar
  11. [11]
    Gao, Z.; Song, N. N.; Zhang, Y. Y.; Li, X. D. Cotton-textileenabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett. 2015, 15, 8194–8203.CrossRefGoogle Scholar
  12. [12]
    Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.CrossRefGoogle Scholar
  13. [13]
    Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621–3638.CrossRefGoogle Scholar
  14. [14]
    Fang, Y.; Zheng, G. F.; Yang, J. P.; Tang, H. S.; Zhang, Y. F.; Kong, B.; Lv, Y. Y.; Xu, C. J.; Asiri, A. M.; Zi, J. et al. Dual-pore mesoporous carbon@silica composite core–shell nanospheres for multidrug delivery. Angew. Chem., Int. Ed. 2014, 53, 5366–5370.CrossRefGoogle Scholar
  15. [15]
    Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738–2741.CrossRefGoogle Scholar
  16. [16]
    Shao, M. F.; Ning, F. Y.; Zhao, Y. F.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem. Mater. 2012, 24, 1192–1197.CrossRefGoogle Scholar
  17. [17]
    Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 1, 7290–7305.CrossRefGoogle Scholar
  18. [18]
    Zhang, G. Q.; Lou, X. W. General synthesis of multishelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 9041–9044.CrossRefGoogle Scholar
  19. [19]
    Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem., Int. Ed. 2005, 44, 5083–5087.CrossRefGoogle Scholar
  20. [20]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  21. [21]
    Lou, X. W.; Yuan, C.; Archer, L. A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater. 2007, 19, 3328–3332.CrossRefGoogle Scholar
  22. [22]
    Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dyesensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.CrossRefGoogle Scholar
  23. [23]
    Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.CrossRefGoogle Scholar
  24. [24]
    Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Lee, Y. S.; Ramakrishna, S.; Madhavi, S. Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chem. Commun. 2015, 51, 2225–2234.CrossRefGoogle Scholar
  25. [25]
    Sun, Y. G.; Mayers, B.; Xia, Y. N. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.CrossRefGoogle Scholar
  26. [26]
    Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.CrossRefGoogle Scholar
  27. [27]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  28. [28]
    Yu, Y.; Gu, L.; Wang, C. L.; Dhanabalan, A.; Van Aken, P. A.; Maier, J. encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem., Int. Ed. 2009, 48, 6485–6489.CrossRefGoogle Scholar
  29. [29]
    Luo, W.; Lorger, S.; Wang, B.; Bommier, C.; Ji, X. L. Facile synthesis of one-dimensional peapod-like Sb@C submicronstructures. Chem. Commun. 2014, 50, 5435–5437.CrossRefGoogle Scholar
  30. [30]
    Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.CrossRefGoogle Scholar
  31. [31]
    Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem., Int. Ed. 2013, 52, 3887–3890.CrossRefGoogle Scholar
  32. [32]
    Zhang, G. Q.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 8643–8647.CrossRefGoogle Scholar
  33. [33]
    Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.CrossRefGoogle Scholar
  34. [34]
    Zhang, Z. T.; Guo, K. P.; Li, Y. M.; Li, X. Y.; Guan, G. Z.; Li, H. P.; Luo, Y. F.; Zhao, F. Y.; Zhang, Q.; Wei, B. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics 2015, 9, 233–238.CrossRefGoogle Scholar
  35. [35]
    Meng, J. S.; Liu, Z. A.; Niu, C. J.; Xu, X. M.; Liu, X.; Zhang, G. B.; Wang, X. P.; Huang, M.; Yu, Y.; Mai, L. Q. A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 4893–4899.CrossRefGoogle Scholar
  36. [36]
    Hu, Y. X.; Zhang, T. R.; Cheng, F. Y.; Zhao, Q.; Han, X. P.; Chen, J. Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries. Angew. Chem., Int. Ed. 2015, 54, 4338–4343.CrossRefGoogle Scholar
  37. [37]
    Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.CrossRefGoogle Scholar
  38. [38]
    Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralonglife lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.CrossRefGoogle Scholar
  39. [39]
    Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.CrossRefGoogle Scholar
  40. [40]
    Ren, Y.; Ma, Z.; Bruce, P. G. Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 2012, 41, 4909–4927.CrossRefGoogle Scholar
  41. [41]
    Huang, X. L.; Xu, D.; Yuan, S.; Ma, D. L.; Wang, S.; Zheng, H. Y.; Zhang, X. B. Dendritic Ni-P-coated melamine foam for a lightweight, low-cost, and amphipathic three-dimensional current collector for binder-free electrodes. Adv. Mater. 2014, 26, 7264–7270.CrossRefGoogle Scholar
  42. [42]
    Zhao, K. N.; Liu, F. N.; Niu, C. J.; Xu, W. W.; Dong, Y. F.; Zhang, L.; Xie, S. M.; Yan, M. Y.; Wei, Q. L.; Zhao, D. Y. et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv. Sci. 2015, 2, 1500154.CrossRefGoogle Scholar
  43. [43]
    Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.CrossRefGoogle Scholar
  44. [44]
    Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.CrossRefGoogle Scholar
  45. [45]
    Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.CrossRefGoogle Scholar
  46. [46]
    Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.CrossRefGoogle Scholar
  47. [47]
    Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.CrossRefGoogle Scholar
  48. [48]
    Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 2015, 8, 164–171.CrossRefGoogle Scholar
  49. [49]
    Zhang, T. R.; Cheng, F. Y.; Du, J.; Hu, Y. X.; Chen, J. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation. Adv. Energy Mater. 2015, 5, 1400654.CrossRefGoogle Scholar
  50. [50]
    Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.CrossRefGoogle Scholar
  51. [51]
    Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.CrossRefGoogle Scholar
  52. [52]
    Sciacca, B.; Yalcin, A. O.; Garnett, E. C. Transformation of Ag nanowires into semiconducting AgFeS2 nanowires. J. Am. Chem. Soc. 2015, 137, 4340–4343.CrossRefGoogle Scholar
  53. [53]
    Zhang, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphenebased nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.CrossRefGoogle Scholar
  54. [54]
    Wang, Z. L.; Xu, D.; Wang, H. G.; Wu, Z.; Zhang, X. B. In situ fabrication of porous graphene electrodes for highperformance energy storage. ACS Nano 2013, 7, 2422–2430.CrossRefGoogle Scholar
  55. [55]
    Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiashen Meng
    • 1
  • Chaojiang Niu
    • 1
  • Xiong Liu
    • 1
  • Ziang Liu
    • 1
  • Hongliang Chen
    • 2
  • Xuanpeng Wang
    • 1
  • Jiantao Li
    • 1
  • Wei Chen
    • 1
  • Xuefeng Guo
    • 2
    Email author
  • Liqiang Mai
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations