Nano Research

, Volume 9, Issue 8, pp 2424–2432 | Cite as

Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer

  • Linlin Zhang
  • Yang Liu
  • Gan Liu
  • Duo Xu
  • Sheng Liang
  • Xinyuan ZhuEmail author
  • Yunfeng LuEmail author
  • Hui WangEmail author
Research Article


Short in vivo circulation is a major hindrance to the widespread adoption of protein therapeutics. Protein nanocapsules generated by encapsulating proteins with a thin layer of phosphorylcholine-based polymer via a two-step encapsulation process exhibited significantly prolonged plasma half-life. Furthermore, by constructing nanocapsules with similar sizes but different surface charges and chemistry, we demonstrated a generic strategy for prolonging the plasma half-life of therapeutic proteins. In an in vitro experiment, four types of bovine serum albumin (BSA) nanocapsules were incubated with fetal bovine serum (FBS) in phosphate buffer saline (PBS); the cell uptake by HeLa cells was monitored to systematically evaluate the characteristics of the surface chemistry during circulation. Single positron emission tomography–computed tomography (SPECT) was employed to allow real-time observation of the BSA nanoparticle distribution in vivo, as well as quantification of the plasma concentration after intravenous administration. This study offers a practical method for translating a broad range of proteins for clinical use.


phosphorylcholine-based polymer nano-encapsulation function protein delivery protein therapy long-circulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1128_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1142 KB.


  1. [1]
    Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.CrossRefGoogle Scholar
  2. [2]
    Arora, R.; Sawney, S; Saluja, D. Potential therapeutic approaches for the treatment of acute myeloid leukemia with AML1-ETO translocation. Curr. Cancer Drug Targets 2016, 16, 215–225.CrossRefGoogle Scholar
  3. [3]
    Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov. 2006, 5, 507–521.CrossRefGoogle Scholar
  4. [4]
    Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A. K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv. 2015, 12, 415–440.CrossRefGoogle Scholar
  5. [5]
    Baker, M.; Reynolds, H. M.; Lumicisi, B.; Bryson, C. J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself 2010, 1, 314–322.CrossRefGoogle Scholar
  6. [6]
    Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575.CrossRefGoogle Scholar
  7. [7]
    Morachis, J. M.; Mahmoud, E. A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev. 2012, 64, 505–519.CrossRefGoogle Scholar
  8. [8]
    Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.CrossRefGoogle Scholar
  9. [9]
    Jones, S. W.; Roberts, R. A.; Robbins, G. R.; Perry, J. L.; Kai, M. P.; Chen, K.; Bo, T.; Napier, M. E. Ting, J. P. Y.; DeSimone, J. M. et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J. Clin. Invest. 2013, 123, 3061–3073.CrossRefGoogle Scholar
  10. [10]
    Ishihara, T.; Takeda, M.; Sakamoto, H.; Kimoto, A.; Kobayashi, C.; Takasaki, N.; Yuki, K.; Tanaka, K. I.; Takenaga, M.; Igarashi, R. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res. 2009, 26, 2270–2279.CrossRefGoogle Scholar
  11. [11]
    Armstrong, J. K.; Hempel, G.; Koling, S.; Chan, L. S.; Fisher, T.; Meiselman, H. J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110, 103–111.CrossRefGoogle Scholar
  12. [12]
    Robinson, K. J.; Coffey, J. W.; Muller, D. A.; Young, P. R.; Kendall, M. A. F.; Thurech, K. J.; Grøndahl, L.; Corrie, S. R. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Biointerphases 2015, 10, 04A305.CrossRefGoogle Scholar
  13. [13]
    Geagea, R.; Aubert, P. H.; Banet, P.; Sanson, N. Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers. Chem. Commun. 2015, 51, 402–405.CrossRefGoogle Scholar
  14. [14]
    Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556.CrossRefGoogle Scholar
  15. [15]
    Champion, J. A.; Katare, Y. K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control Release 2007, 121, 3–9.CrossRefGoogle Scholar
  16. [16]
    Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Release 2013, 172, 782–794.CrossRefGoogle Scholar
  17. [17]
    Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.CrossRefGoogle Scholar
  18. [18]
    Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546.CrossRefGoogle Scholar
  19. [19]
    Yan, M.; Du, J. J.; Gu, Z; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.CrossRefGoogle Scholar
  20. [20]
    Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.CrossRefGoogle Scholar
  21. [21]
    Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323–330.CrossRefGoogle Scholar
  22. [22]
    Yohannes, G.; Wiedmer, S. K.; Elomaa, M.; Jussila, M.; Aseyev, V.; Riekkola, M. L. Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation. Anal. Chim. Acta 2010, 675, 191–198.CrossRefGoogle Scholar
  23. [23]
    Li, C. Y.; Zhang, D. R.; Guo, Y. Y.; Guo, H. J.; Li, T. T.; Hao, L. L.; Zheng, D. D.; Liu, G. P.; Zhang, Q. Galactosylated bovine serum albumin nanoparticles for parenteral delivery of oridonin: Tissue distribution and pharmacokinetic studies. J. Microencapsul. 2014, 31, 573–578.CrossRefGoogle Scholar
  24. [24]
    Dancey, J. E.; Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 649–659.CrossRefGoogle Scholar
  25. [25]
    Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 1988, 57, 321–347.CrossRefGoogle Scholar
  26. [26]
    Talaei, F.; Azhdarzadeh, M.; Hashemi, N. H.; Moosavi, M.; Foroumadi, A.; Dinarvand, R.; Atyabi, F. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation. Daru 2011, 19, 257–265.Google Scholar
  27. [27]
    Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U. et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416.CrossRefGoogle Scholar
  28. [28]
    Ito, K.; Hamamichi, S.; Asano, M.; Hori, Y.; Matsui, J.; Iwata, M.; Funahashi, Y.; Umeda, I. O.; Fujii, H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci. 2016, 107, 60–67.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health SciencesTsinghua UniversityShenzhenChina
  4. 4.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer ChemistryNankai UniversityTianjinChina

Personalised recommendations