Advertisement

Nano Research

, Volume 9, Issue 8, pp 2411–2423 | Cite as

Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation

  • Meng Li
  • Yijia Guan
  • Zhaowei Chen
  • Nan Gao
  • Jinsong Ren
  • Kai Dong
  • Xiaogang QuEmail author
Research Article

Abstract

Amyloid β-peptide (Aβ) aggregation is a critical step in the pathogenesis of Alzheimer’s disease (AD). Inhibition of Aβ production, dissolution of existing aggregates and clearance of Aβ represent valid therapeutic strategies against AD. Herein, a novel platinum(II)-coordinated graphitic carbon nitride (g-C3N4) nanosheet (g-C3N4@Pt) has been designed to covalently bind to Aβ and modulate the peptide’s aggregation and toxicity. Furthermore, g-C3N4@Pt nanosheets possess high photocatalytic activity and can oxygenate Aβ upon visible light irradiation, remarkably attenuating both the aggregation potency and neurotoxicity of Aβ. Due to its ability to cross the blood-brain barrier (BBB) and its good biocompatibility, g-C3N4@Pt nanosheet is a promising inhibitor of Aβ aggregation. This study may serve as a model for the engineering of novel multifunctional nanomaterials used for the treatment of AD.

Keywords

amyloid disease platinum graphitic carbon nitride nanosheet photooxygenation amyloid β-peptide (Aβ) inhibitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1127_MOESM1_ESM.pdf (3.3 mb)
Supplementary material, approximately 3399 KB.

References

  1. [1]
    Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356.CrossRefGoogle Scholar
  2. [2]
    Hamley, I. W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 2012, 112, 5147–5192.CrossRefGoogle Scholar
  3. [3]
    Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew. Chem., Int. Ed. 2009, 48, 3030–3059.CrossRefGoogle Scholar
  4. [4]
    Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995–2044.CrossRefGoogle Scholar
  5. [5]
    Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda, T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.; Morishita, R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA 2010, 107, 7036–7041.CrossRefGoogle Scholar
  6. [6]
    Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D. J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA 2011, 108, 5819–5824.CrossRefGoogle Scholar
  7. [7]
    De Felice, F. G.; Vieira, M. N. N.; Bomfim, T. R.; Decker, H.; Velasco, P. T.; Lambert, M. P.; Viola, K. L.; Zhao, W. Q.; Ferreira, S. T.; Klein, W. L. Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl. Acad. Sci. USA 2009, 106, 1971–1976.CrossRefGoogle Scholar
  8. [8]
    Ono, K.; Condron, M. M.; Teplow, D. B. Structureneurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 2009, 106, 14745–14750.CrossRefGoogle Scholar
  9. [9]
    Takahashi, T.; Mihara, H. Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Acc. Chem. Res. 2008, 41, 1309–1318.CrossRefGoogle Scholar
  10. [10]
    Frydman-Marom, A.; Rechter, M.; Shefler, I.; Bram, Y.; Shalev, D. E.; Gazit, E. Cognitive-performance recovery of Alzheimer's disease model mice by modulation of early soluble amyloidal assemblies. Angew. Chem., Int. Ed. 2009, 48, 1981–1986.CrossRefGoogle Scholar
  11. [11]
    Tjernberg, L. O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 1996, 271, 8545–8548.CrossRefGoogle Scholar
  12. [12]
    Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566.CrossRefGoogle Scholar
  13. [13]
    Matlack, K. E. S.; Tardiff, D. F.; Narayan, P.; Hamamichi, S.; Caldwell, K. A.; Caldwell, G. A.; Lindquist, S. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc. Natl. Acad. Sci. USA 2014, 111, 4013–4018.CrossRefGoogle Scholar
  14. [14]
    Barnham, K. J.; Kenche, V. B.; Ciccotosto, G. D.; Smith, D. P.; Tew, D. J.; Liu, X.; Perez, K.; Cranston, G. A.; Johanssen, T. J.; Volitakis, I. et al. Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 2008, 105, 6813–6818.CrossRefGoogle Scholar
  15. [15]
    Hureau, C.; Faller, P. Platinoid complexes to target monomeric disordered peptides: A forthcoming solution against amyloid diseases? Dalton Trans. 2014, 43, 4233–4237.CrossRefGoogle Scholar
  16. [16]
    Scott, L. E.; Orvig, C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev. 2009, 109, 4885–4910.CrossRefGoogle Scholar
  17. [17]
    Cassagnes, L.-E.; Hervé, V.; Nepveu, F.; Hureau, C.; Faller, P.; Collin, F. The catalytically active copper-amyloid-beta state: Coordination site responsible for reactive oxygen species production. Angew. Chem., Int. Ed. 2013, 52, 11110–11113.CrossRefGoogle Scholar
  18. [18]
    Lim, S.; Paterson, B. M.; Fodero-Tavoletti, M. T.; O’Keefe, G. J.; Cappai, R.; Barnham, K. J.; Villemagne, V. L.; Donnelly, P. S. A copper radiopharmaceutical for diagnostic imaging of Alzheimer’s disease: A bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-β plaques. Chem. Commun. 2010, 46, 5437–5439.CrossRefGoogle Scholar
  19. [19]
    Ma, G. L.; Huang, F.; Pu, X. W.; Jia, L. Y.; Jiang, T.; Li, L. Z.; Liu, Y. Z. Identification of [PtCl2(phen)] binding modes in amyloid-β peptide and the mechanism of aggregation inhibition. Chem.—Eur. J. 2011, 17, 11657–11666.CrossRefGoogle Scholar
  20. [20]
    Kenche, V. B.; Hung, L. W.; Perez, K.; Volitakes, I.; Ciccotosto, G.; Kwok, J.; Critch, N.; Sherratt, N.; Cortes, M.; Lal, V. et al. Development of a platinum complex as an anti-amyloid agent for the therapy of Alzheimer's disease. Angew. Chem., Int. Ed. 2013, 52, 3374–3378.CrossRefGoogle Scholar
  21. [21]
    Man, B. Y.-W.; Chan, H.-M.; Leung, C.-H.; Chan, D. S.-H.; Bai, L.-P.; Jiang, Z.-H.; Li, H.-W.; Ma, D.-L. Group 9 metal-based inhibitors of β-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer's disease. Chem. Sci. 2011, 2, 917–921.CrossRefGoogle Scholar
  22. [22]
    Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.CrossRefGoogle Scholar
  23. [23]
    Yoo, S. I.; Yang, M.; Brender, J. R.; Subramanian, V.; Sun, K.; Joo, N. E.; Jeong, S.-H.; Ramamoorthy, A.; Kotov, N. A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angew. Chem., Int. Ed. 2011, 50, 5110–5115.CrossRefGoogle Scholar
  24. [24]
    Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaeeef, F.; Ghiasi, S. M. A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012, 4, 7322–7325.CrossRefGoogle Scholar
  25. [25]
    Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.CrossRefGoogle Scholar
  26. [26]
    Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.CrossRefGoogle Scholar
  27. [27]
    Komatsu, T. Attempted chemical synthesis of graphite-like carbon nitride. J. Mater. Chem. 2001, 11, 799–801.CrossRefGoogle Scholar
  28. [28]
    Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.CrossRefGoogle Scholar
  29. [29]
    Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.CrossRefGoogle Scholar
  30. [30]
    Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/ nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.CrossRefGoogle Scholar
  31. [31]
    Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.CrossRefGoogle Scholar
  32. [32]
    Tian, J. Q.; Liu, Q.; Ge, C. J.; Xing, Z. C.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921–8924.CrossRefGoogle Scholar
  33. [33]
    Wang, Q. B.; Wang, W.; Lei, J. P.; Xu, N.; Gao, F. L.; Ju, H. X. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182–12188.CrossRefGoogle Scholar
  34. [34]
    Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.CrossRefGoogle Scholar
  35. [35]
    Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem., Int. Ed. 2010, 49, 9706–9710.CrossRefGoogle Scholar
  36. [36]
    Tang, Y. R.; Song, H. J.; Su, Y. Y.; Lv, Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 2013, 85, 11876–11884.CrossRefGoogle Scholar
  37. [37]
    Li, M.; Zhao, C. Q.; Yang, X. J.; Ren, J. S.; Xu, C.; Qu, X. G. In situ monitoring Alzheimer's disease β-amyloid aggregation and screening of Aβ inhibitors using a perylene probe. Small 2013, 9, 52–55.CrossRefGoogle Scholar
  38. [38]
    Klement, K.; Wieligmann, K.; Meinhardt, J.; Hortschansky, P.; Richter, W.; Fändrich, M. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1–40) amyloid fibrils. J. Mol. Biol. 2007, 373, 1321–1333.CrossRefGoogle Scholar
  39. [39]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  40. [40]
    Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301.CrossRefGoogle Scholar
  41. [41]
    Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174.CrossRefGoogle Scholar
  42. [42]
    Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Sponge-like nickel and nickel nitride structures for catalytic applications. Adv. Mater. 2014, 26, 1272–1276.CrossRefGoogle Scholar
  43. [43]
    Geng, J.; Li, M.; Ren, J. S.; Wang, E. B.; Qu, X. G. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew. Chem., Int. Ed. 2011, 50, 4184–4188.CrossRefGoogle Scholar
  44. [44]
    Yu, H. J.; Li, M.; Liu, G. P.; Geng, J.; Wang, J. Z.; Ren, J. S.; Zhao, C. Q.; Qu, X. G. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem. Sci. 2012, 3, 3145–3153.CrossRefGoogle Scholar
  45. [45]
    Schlamadinger, D. E.; Kats, D. I.; Kim, J. E. Quenching of tryptophan fluorescence in unfolded cytochrome c: A biophysics experiment for physical chemistry students. J. Chem. Educ. 2010, 87, 961–964.CrossRefGoogle Scholar
  46. [46]
    Puchalski, M. M.; Morra, M. J.; von Wandruszka, R. Assessment of inner filter effect corrections in fluorimetry. Fresenius J. Anal. Chem. 1991, 340, 341–344.CrossRefGoogle Scholar
  47. [47]
    Cheng, N. Y.; Tian, J. Q.; Liu, Q.; Ge, C. J.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Au-nanoparticleloaded graphitic carbon nitride nanosheets: Green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 2013, 5, 6815–6819.CrossRefGoogle Scholar
  48. [48]
    Pei, W. B.; Wu, J. S.; Liu, J. L.; Ren, X. M.; Shen, L. J. Ion-pair complexes with strong near infrared absorbance: Syntheses, crystal structures and spectroscopic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 191–197.CrossRefGoogle Scholar
  49. [49]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599.CrossRefGoogle Scholar
  50. [50]
    Li, M.; Xu, C.; Wu, L.; Ren, J. S.; Wang, E. B.; Qu, X. G. Self-assembled peptide-polyoxometalate hybrid nanospheres: Two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer’s disease. Small 2013, 9, 3455–3461.CrossRefGoogle Scholar
  51. [51]
    Mishra, R.; Bulic, B.; Sellin, D.; Jha, S.; Waldmann, H.; Winter, R. Small-molecule inhibitors of islet amyloid polypeptide fibril formation. Angew. Chem., Int. Ed. 2008, 47, 4679–4682.CrossRefGoogle Scholar
  52. [52]
    Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. Adv. Mater. 2012, 24, 1722–1728.CrossRefGoogle Scholar
  53. [53]
    Petkova, A. T.; Leapman, R. D.; Guo, Z. H.; Yau, W.-M.; Mattson, M. P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005, 307, 262–265.CrossRefGoogle Scholar
  54. [54]
    Balducci, C.; Beeg, M.; Stravalaci, M.; Bastone, A.; Sclip, A.; Biasini, E.; Tapella, L.; Colombo, L.; Manzoni, C.; Borsello, T. et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 2010, 107, 2295–2300.CrossRefGoogle Scholar
  55. [55]
    Li, M.; Xu, C.; Ren, J. S.; Wang, E. B.; Qu, X. G. Photodegradation of β-sheet amyloid fibrils associated with Alzheimer’s disease by using polyoxometalates as photocatalysts. Chem. Commun. 2013, 49, 11394–11396.CrossRefGoogle Scholar
  56. [56]
    Li, M.; Liu, Z.; Ren, J. S.; Qu, X. G. Inhibition of metalinduced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. Chem. Sci. 2012, 3, 868–873.CrossRefGoogle Scholar
  57. [57]
    Rastogi, R. P.; Singh, S. P.; Häder, D.-P.; Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidantsensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607.CrossRefGoogle Scholar
  58. [58]
    Ahmed, M. H.; Keyesa, T. E.; Byrne, J. A. The photocatalytic inactivation effect of Ag-TiO2 on β-amyloid peptide (1–42). J. Photoch. Photobio. A: Chem. 2013, 254, 1–11.CrossRefGoogle Scholar
  59. [59]
    Pramanik, D.; Ghosh, C.; Dey, S. G. Heme-Cu bound Aβ peptides: Spectroscopic characterization, reactivity, and relevance to Alzheimer's disease. J. Am. Chem. Soc. 2011, 133, 15545–15552.CrossRefGoogle Scholar
  60. [60]
    Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem., Int. Ed. 2014, 53, 1382–1385.CrossRefGoogle Scholar
  61. [61]
    D’Angelo, B.; Santucci, S.; Benedetti, E.; Di Loreto, S.; Phani, R.; Falone, S.; Amicarelli, F.; Cerù, M.; Cimini, A. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr. Nanosci. 2009, 5, 167–176.CrossRefGoogle Scholar
  62. [62]
    Li, M.; Shi, P.; Xu, C.; Ren, J. S.; Qu, X. G. Cerium oxide caged metal chelator: Anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem. Sci. 2013, 4, 2536–2542.CrossRefGoogle Scholar
  63. [63]
    Harris, M. E.; Hensley, K.; Butterfield, D. A.; Leedle, R. A.; Carney, J. M. Direct evidence of oxidative injury produced by the Alzheimer's β-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 1995, 131, 193–202.CrossRefGoogle Scholar
  64. [64]
    Miranda, S.; Opazo, C.; Larrondo, L. F.; Muñoz, F. J.; Ruiz, F.; Leighton, F.; Inestrosa, N. C. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog. Neurobiol. 2000, 62, 633–648.CrossRefGoogle Scholar
  65. [65]
    Liu, Y. L.; Ai, K. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem., Int. Ed. 2012, 51, 1437–1442.CrossRefGoogle Scholar
  66. [66]
    Liu, Z.; Pu, F.; Huang, S.; Yuan, Q. H.; Ren, J. S.; Qu, X. G. Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 2013, 34, 1712–1721.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Meng Li
    • 1
    • 2
  • Yijia Guan
    • 1
    • 2
  • Zhaowei Chen
    • 1
    • 2
  • Nan Gao
    • 1
  • Jinsong Ren
    • 1
  • Kai Dong
    • 1
    • 2
  • Xiaogang Qu
    • 1
    Email author
  1. 1.Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations