Advertisement

Nano Research

, Volume 9, Issue 8, pp 2384–2397 | Cite as

Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake

  • Alan P. Weightman
  • Stuart I. Jenkins
  • Divya M. ChariEmail author
Research Article

Abstract

Development of nanoparticle (NP) based therapies to promote regeneration in sites of central nervous system (CNS; i.e. brain and spinal cord) pathology relies critically on the availability of experimental models that offer biologically valid predictions of NP fate in vivo. However, there is a major lack of biological models that mimic the pathological complexity of target neural sites in vivo, particularly the responses of resident neural immune cells to NPs. Here, we have utilised a previously developed in vitro model of traumatic spinal cord injury (based on 3-D organotypic slice arrays) with dynamic time lapse imaging to reveal in real-time the acute cellular fate of NPs within injury foci. We demonstrate the utility of our model in revealing the well documented phenomenon of avid NP sequestration by the intrinsic immune cells of the CNS (the microglia). Such immune sequestration is a known translational barrier to the use of NP-based therapeutics for neurological injury. Accordingly, we suggest that the utility of our model in mimicking microglial sequestration behaviours offers a valuable investigative tool to evaluate strategies to overcome this cellular response within a simple and biologically relevant experimental system, whilst reducing the use of live animal neurological injury models for such studies.

Keywords

organotypic slice culture microglia immune barrier corticosteroid dexamethasone time lapse microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1125_MOESM1_ESM.pdf (450 kb)
Supplementary material, approximately 452 KB.
12274_2016_1125_MOESM2_ESM.avi (6.9 mb)
Supplementary material, approximately 6.87 MB.
12274_2016_1125_MOESM3_ESM.avi (122.1 mb)
Supplementary material, approximately 122 MB.
12274_2016_1125_MOESM4_ESM.avi (8.7 mb)
Supplementary material, approximately 8.73 MB.

References

  1. [1]
    Hoff, D.; Sheikh, L.; Bhattacharya, S.; Nayar, S.; Webster, T. J. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier. Int. J. Nanomedicine 2013, 8, 703–710.Google Scholar
  2. [2]
    Bhaskar, S.; Tian, F. R.; Stoeger, T.; Kreyling, W.; de la Fuente, J. M.; Grazú, V; Borm, P.; Estrada, G.; Ntziachristos, V.; Razansky, D. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 2010, 7, 3.CrossRefGoogle Scholar
  3. [3]
    David, A. E.; Cole, A. J.; Yang, V. C. Magnetically targeted nanoparticles for brain tumor therapy: What does the future hold? Nanomedicine 2011, 6, 1133–1135.CrossRefGoogle Scholar
  4. [4]
    Wong, H. L.; Wu, X. Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 2012, 64, 686–700.CrossRefGoogle Scholar
  5. [5]
    Nayak, D.; Roth, T. L.; McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 2014, 32, 367–402.CrossRefGoogle Scholar
  6. [6]
    Lee, G.; Dallas, S.; Hong, M.; Bendayan, R. Drug transporters in the central nervous system: Brain barriers and brain parenchyma considerations. Pharmacol. Rev. 2001, 53, 569–596.CrossRefGoogle Scholar
  7. [7]
    Tremblay, M.-È.; Stevens, B.; Sierra, A.; Wake, H.; Bessis, A.; Nimmerjahn, A. The role of microglia in the healthy brain. J. Neurosci. 2011, 31, 16064–16069.CrossRefGoogle Scholar
  8. [8]
    Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308, 1314–1318.CrossRefGoogle Scholar
  9. [9]
    Jenkins, S. I.; Roach, P.; Chari, D. M. Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine 2015, 11, 77–87.Google Scholar
  10. [10]
    Pinkernelle, J.; Calatayud, P.; Goya, G. F.; Fansa, H.; Keilhoff, G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012, 13, 32.CrossRefGoogle Scholar
  11. [11]
    Maysinger, D.; Behrendt, M.; Lalancette-Hébert, M.; Kriz, J. Real-time imaging of astrocyte response to quantum dots: In vivo screening model system for biocompatibility of nanoparticles. Nano Lett. 2007, 7, 2513–2520.CrossRefGoogle Scholar
  12. [12]
    Fleige, G.; Nolte, C.; Synowitz, M.; Seeberger, F.; Kettenmann, H.; Zimmer, C. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 2001, 3, 489–499.CrossRefGoogle Scholar
  13. [13]
    van Landeghem, F. K. H.; Maier-Hauff, K.; Jordan, A.; Hoffmann, K. T.; Gneveckow, U.; Scholz, R.; Thiesen, B.; Brück, W.; von Deimling, A. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009, 30, 52–57.CrossRefGoogle Scholar
  14. [14]
    Jenkins, S. I.; Pickard, M. R.; Furness, D. N.; Yiu, H. H. P.; Chari, D. M. Differences in magnetic particle uptake by CNS neuroglial subclasses: Implications for neural tissue engineering. Nanomedicine 2013, 8, 951–968.CrossRefGoogle Scholar
  15. [15]
    McGonigle, P.; Ruggeri, B. Animal models of human disease: Challenges in enabling translation. Biochem. Pharmacol. 2014, 87, 162–171.CrossRefGoogle Scholar
  16. [16]
    Talac, R.; Friedman, J. A.; Moore, M. J.; Lu, L.; Jabbari, E.; Windebank, A. J.; Currier, B. L.; Yaszemski, M. J. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004, 25, 1505–1510.CrossRefGoogle Scholar
  17. [17]
    Vieira de Castro, A. C.; Olsson, I. A. S. Does the goal justify the methods? Harm and benefit in neuroscience research using animals. Curr. Top. Behav. Neurosci. 2015, 19, 47–78.CrossRefGoogle Scholar
  18. [18]
    Sauer, U. G. Animal and non-animal experiments in nanotechnology—The results of a critical literature survey. ALTEX 2009, 26, 109–128.Google Scholar
  19. [19]
    Zhang, H.; Jarjour, A. A.; Boyd, A.; Williams, A. Central nervous system remyelination in culture—A tool for multiple sclerosis research. Exp. Neurol. 2011, 230, 138–148.CrossRefGoogle Scholar
  20. [20]
    Weightman, A. P.; Pickard, M. R.; Yang, Y.; Chari, D. M. An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials 2014, 35, 3756–3765.CrossRefGoogle Scholar
  21. [21]
    Jeffery, N. D.; McBain, S. C.; Dobson, J.; Chari, D. M. Uptake of systemically administered magnetic nanoparticles (MNPs) in areas of experimental spinal cord injury (SCI). J. Tissue Eng. Regen. Med. 2009, 3, 153–157.CrossRefGoogle Scholar
  22. [22]
    Stoppini, L.; Buchs, P. A.; Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 1991, 37, 173–182.CrossRefGoogle Scholar
  23. [23]
    Bonnici, B.; Kapfhammer, J. P. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Eur. J. Neurosci. 2008, 27, 2483–2492.CrossRefGoogle Scholar
  24. [24]
    Pickard, M. R.; Chari, D. M. Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: Implications for particle uptake in mixed neural cell populations. Int. J. Mol. Sci. 2010, 11, 967–981.CrossRefGoogle Scholar
  25. [25]
    Pickard, M. R.; Jenkins, S. I.; Koller, C. J.; Furness, D. N.; Chari, D. M. Magnetic nanoparticle labeling of astrocytes derived for neural transplantation. Tissue Eng. Part C Methods 2011, 17, 89–99.CrossRefGoogle Scholar
  26. [26]
    Cooper, J. A. Background Subtraction to Obtain Total Fluorescence per Cell, using ImageJ and Excel [Online], 2008; pp 1–8. http://www.cooperlab.wustl.edu/LabMethodsReagentsOperations/Background Subtract Total Fluor per Cell/Instructions.pdf (accessed Aug 20, 2015).Google Scholar
  27. [27]
    Nehmé, A.; Lobenhofer, E. K.; Stamer, W. D.; Edelman, J. L. Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. BMC Med. Genomics 2009, 2, 58.CrossRefGoogle Scholar
  28. [28]
    Sur, P.; Sribnick, E. A.; Patel, S. J.; Ray, S. K.; Banik, N. L. Dexamethasone decreases temozolomide-induced apoptosis in human gliobastoma T98G cells. Glia 2005, 50, 160–167.CrossRefGoogle Scholar
  29. [29]
    McCarthy, K. D.; de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980, 85, 890–902.CrossRefGoogle Scholar
  30. [30]
    Nguyen, K. B.; McCombe, P. A.; Pender, M. P. Increased apoptosis of T lymphocytes and macrophages in the central and peripheral nervous systems of Lewis rats with experimental autoimmune encephalomyelitis treated with dexamethasone. J. Neuropath. Exp. Neur. 1997, 56, 58–69.CrossRefGoogle Scholar
  31. [31]
    East, E.; Golding, J. P.; Phillips, J. B. Engineering an integrated cellular interface in three-dimensional hydrogel cultures permits monitoring of reciprocal astrocyte and neuronal responses. Tissue Eng. Part C Methods 2012, 18, 526–536.CrossRefGoogle Scholar
  32. [32]
    Kim, H. J.; Park, J. W.; Park, J. W.; Byun, J. H.; Vahidi, B.; Rhee, S. W.; Jeon N. L. Integrated microfluidics platforms for investigating injury and regeneration of CNS axons. Ann. Biomed. Eng. 2012, 40, 1268–1276.CrossRefGoogle Scholar
  33. [33]
    Krassioukov, A. V.; Ackery, A.; Schwartz, G.; Adamchik, Y.; Liu, Y.; Fehlings, M. G. An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res. Protoc. 2002, 10, 60–68.CrossRefGoogle Scholar
  34. [34]
    Morrison, B., III; Saatman, K. E.; Meaney, D. F.; McIntosh, T. K. In vitro central nervous system models of mechanically induced trauma: A review. J. Neurotrauma 1998, 15, 911–928.CrossRefGoogle Scholar
  35. [35]
    Ravikumar, M.; Jain, S.; Miller, R. H.; Capadona, J. R.; Selkirk, S. M. An organotypic spinal cord slice culture model to quantify neurodegeneration. J. Neurosci. Methods 2012, 211, 280–288.CrossRefGoogle Scholar
  36. [36]
    Balentine, J. D.; Greene, W. B.; Bornstein, M. In vitro spinal cord trauma. Lab. Invest. 1988, 58, 93–99.Google Scholar
  37. [37]
    Boomkamp, S. D.; Riehle, M. O.; Wood, J.; Olson, M. F.; Barnett, S. C. The development of a rat in vitro model of spinal cord injury demonstrating the additive effects of rho and ROCK inhibitors on neurite outgrowth and myelination. Glia 2012, 60, 441–456.CrossRefGoogle Scholar
  38. [38]
    Heinonen, T. Better science with human cell-based organ and tissue models. Altern. Lab. Anim. 2015, 43, 29–38.Google Scholar
  39. [39]
    Jeong, D. K.; Taghavi, C. E.; Song, K. J.; Lee, K. B.; Kang, H. W. Organotypic human spinal cord slice culture as an alternative to direct transplantation of human bone marrow precursor cells for treating spinal cord injury. World Neurosurg. 2011, 75, 533–539.CrossRefGoogle Scholar
  40. [40]
    Reynolds, R. M.; Seckl, J. R. Antenatal glucocorticoid treatment: Are we doing harm to term babies? J. Clin. Endocrinol. Metab. 2012, 97, 3457–3459.CrossRefGoogle Scholar
  41. [41]
    Burton, J. M.; O’Connor, P. W.; Hohol, M.; Beyene, J. Oral versus intravenous steroids for treatment of relapses in multiple sclerosis. Cochrane Database Syst. Rev. 2012, 12, CD006921.Google Scholar
  42. [42]
    Ganter, S.; Northoff, H.; Männel, D.; Gebicke-Härter, P. J. Growth control of cultured microglia. J. Neurosci. Res. 1992, 33, 218–230.CrossRefGoogle Scholar
  43. [43]
    Zhou, Y.; Ling, E.-A.; Dheen, S. T. Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J. Neurochem. 2007, 102, 667–678.CrossRefGoogle Scholar
  44. [44]
    Jenkins, S. I.; Pickard, M. R.; Khong, M.; Smith, H. L.; Mann, C. L. A.; Emes, R. D.; Chari, D. M. Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS Chem. Neurosci. 2014, 5, 51–63.CrossRefGoogle Scholar
  45. [45]
    Li, M. Q.; Wang, Y. Y.; Guo, R. W.; Bai, Y.; Yu, Z. P. Glucocorticoids impair microglia ability to induce T cell proliferation and Th1 polarization. Immunol. Lett. 2007, 109, 129–137.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alan P. Weightman
    • 1
  • Stuart I. Jenkins
    • 1
  • Divya M. Chari
    • 1
    Email author
  1. 1.Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Huxley BuildingKeele UniversityKeeleUK

Personalised recommendations