Advertisement

Nano Research

, Volume 9, Issue 8, pp 2372–2383 | Cite as

Thermal conduction across the one-dimensional interface between a MoS2 monolayer and metal electrode

  • Xiangjun Liu
  • Gang ZhangEmail author
  • Yong-Wei Zhang
Research Article

Abstract

The thermal conductance across the one-dimensional (1D) interface between a MoS2 monolayer and Au electrode (edge-contact) has been investigated using molecular dynamics simulations. Although the thermal conductivity of monolayer MoS2 is 2–3 orders of magnitude lower than that of graphene, the covalent bonds formed at the interface enable interfacial thermal conductance (ITC) that is comparable to that of a graphene–metal interface. Each covalent bond at the interface serves as an independent channel for thermal conduction, allowing ITC to be tuned linearly by changing the interfacial bond density (controlling S vacancies). In addition, different Au surfaces form different bonding configurations, causing large ITC variations. Interestingly, the S vacancies in the central region of MoS2 only slightly affect the ITC, which can be explained by a mismatch of the phonon vibration spectra. Further, at room temperature, ITC is primarily dominated by phonon transport, and electron–phonon coupling plays a negligible role. These results not only shed light on the phonon transport mechanisms across 1D metal–MoS2 interfaces, but also provide guidelines for the design and optimization of such interfaces for thermal management in MoS2-based electronic devices.

Keywords

MoS2 interfacial thermal conductance thermal management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  2. [2]
    Radisavljevic, B.; Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.CrossRefGoogle Scholar
  3. [3]
    Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H.-C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.CrossRefGoogle Scholar
  4. [4]
    Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J.-C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.CrossRefGoogle Scholar
  5. [5]
    Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 fieldeffect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.CrossRefGoogle Scholar
  6. [6]
    Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z.-Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.CrossRefGoogle Scholar
  7. [7]
    Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z.-Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. Highperformance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.CrossRefGoogle Scholar
  8. [8]
    Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phononlimited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.CrossRefGoogle Scholar
  9. [9]
    Cai, Y. Q.; Zhang, G.; Zhang, Y.-W. Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269–6275.CrossRefGoogle Scholar
  10. [10]
    Kang, K.; Xie, S.; Huang, L. J.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J. High-mobility threeatom- thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  11. [11]
    Popov, I.; Seifert, G.; Tomanek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.CrossRefGoogle Scholar
  12. [12]
    Liu, D.; Guo, Y.; Fang, L.; Robertson, J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 2013, 103, 183113.CrossRefGoogle Scholar
  13. [13]
    Guo, Y.; Liu, D.; Robertson, J. Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Appl. Phys. Lett. 2015, 106, 173106.CrossRefGoogle Scholar
  14. [14]
    Balandin, A. A. Thermal properties of graphene and nano-structured carbon materials. Nat. Mater. 2011, 10, 569–581.CrossRefGoogle Scholar
  15. [15]
    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.CrossRefGoogle Scholar
  16. [16]
    Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J.-F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.CrossRefGoogle Scholar
  17. [17]
    Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.CrossRefGoogle Scholar
  18. [18]
    Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperaturedependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061–5065.CrossRefGoogle Scholar
  19. [19]
    Liu, X. J.; Zhang, G.; Pei, Q.-X.; Zhang, Y.-W. Phonon Thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.CrossRefGoogle Scholar
  20. [20]
    Li, W.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 253103.CrossRefGoogle Scholar
  21. [21]
    Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y.-W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.CrossRefGoogle Scholar
  22. [22]
    Jiang, J.-W.; Zhuang, X. Y.; Rabczuk, T. Orientation dependent thermal conductance in single-layer MoS2. Sci. Rep. 2013, 3, 2209.Google Scholar
  23. [23]
    Wei, X. L.; Wang, Y. C.; Shen, Y. L.; Xie, G. F.; Xiao, H. P.; Zhong, J. X.; Zhang, G. Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 2014, 105, 103902.CrossRefGoogle Scholar
  24. [24]
    Liu, T.-H.; Chen, Y.-C.; Pao, C.-W.; Chang, C.-C. Anisotropic thermal conductivity of MoS2 nanoribbons: Chirality and edge effects. Appl. Phys. Lett. 2014, 104, 201909.CrossRefGoogle Scholar
  25. [25]
    Wu, X. F.; Yang, N.; Luo, T. F. Unusual isotope effect on thermal transport of single layer molybdenum disulphide. Appl. Phys. Lett. 2015, 107, 191907.CrossRefGoogle Scholar
  26. [26]
    Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.CrossRefGoogle Scholar
  27. [27]
    Chen, J.; Walther, J. H.; Koumoutsakos, P. Covalently bonded graphene–carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater. 2015, 25, 7539–7545.CrossRefGoogle Scholar
  28. [28]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Graphene-based thermal modulator. Nano Res. 2015, 8, 2755–2762.CrossRefGoogle Scholar
  29. [29]
    Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.CrossRefGoogle Scholar
  30. [30]
    Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.CrossRefGoogle Scholar
  31. [31]
    Liu, W.; Kang, J. H.; Cao, W.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. High-performance few-layer-MoS2 fieldeffect-transistor with record low contact-resistance. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013, pp 19.4.1−19.4.4.Google Scholar
  32. [32]
    Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transitionmetal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.Google Scholar
  33. [33]
    Mao, R.; Kong, B. D.; Kim, K. W. Thermal transport properties of metal/MoS2 interfaces from first principles. J. Appl. Phys. 2014, 116, 034302.CrossRefGoogle Scholar
  34. [34]
    Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo–S systems. Phys. Rev. B 2009, 79, 245110.CrossRefGoogle Scholar
  35. [35]
    Stewart, J. A.; Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 2013, 21, 045003.CrossRefGoogle Scholar
  36. [36]
    Tang, D.-M; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.Google Scholar
  37. [37]
    Dang, K. Q.; Spearot, D. E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J. Appl. Phys. 2014, 116, 013508.CrossRefGoogle Scholar
  38. [38]
    Wang, X. N.; Tabarraei, A.; Spearot, D. E. Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology 2015, 26, 175703.CrossRefGoogle Scholar
  39. [39]
    Foiles, S. M.; Baskes, M. I.; Daw, M. S. Embedded-atommethod functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991.CrossRefGoogle Scholar
  40. [40]
    Liu, K. S. S.; Yong, C. W.; Garrison, B. J.; Vickerman, J. C. Molecular dynamics simulations of particle bombardment induced desorption processes: Alkanethiolates on Au(111). J. Phys. Chem. B 1999, 103, 3195–3205.CrossRefGoogle Scholar
  41. [41]
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.CrossRefGoogle Scholar
  42. [42]
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  43. [43]
    Li, W. F.; Guo, M.; Zhang, G.; Zhang, Y.-W. Edge-specific Au/Ag functionalization-induced conductive paths in armchair MoS2 nanoribbons. Chem. Mater. 2014, 26, 5625–5631.CrossRefGoogle Scholar
  44. [44]
    Landry, E. S.; McGaughey, A. J. H. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 2009, 80, 165304.CrossRefGoogle Scholar
  45. [45]
    Balasubramanian, G.; Puri, I. K. Heat conduction across a solid-solid interface: Understanding nanoscale interfacial effects on thermal resistance. Appl. Phys. Lett. 2011, 99, 013116.CrossRefGoogle Scholar
  46. [46]
    Chen, J.; Zhang, G.; Li, B. W. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 2012, 112, 064319.CrossRefGoogle Scholar
  47. [47]
    Alexeev, D.; Chen, J.; Walther, J. H.; Giapis, K. P.; Angelikopoulos, P.; Koumoutsakos, P. Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett. 2015, 15, 5744–5749.CrossRefGoogle Scholar
  48. [48]
    da Cruz, C. A.; Chantrenne, P.; Kleber, X. Molecular dynamics simulations and Kapitza conductance prediction of Si/Au systems using the new full 2NN MEAM Si/Au cross-potential. J. Heat Transfer 2012, 134, 062402.CrossRefGoogle Scholar
  49. [49]
    Yang, N.; Luo, T. F.; Esfarjani, K.; Henry, A.; Tian, Z. T.; Shiomi, J.; Chalopin, Y.; Li, B. W.; Chen, G. Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. J. Comput. Theor. Nanosci. 2015, 12, 168–174.CrossRefGoogle Scholar
  50. [50]
    Wang, Y.; Ruan, X. L.; Roy, A. K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 2012, 85, 205311.CrossRefGoogle Scholar
  51. [51]
    Mao, R.; Kong, B. D.; Gong, C.; Xu, S.; Jayasekera, T.; Cho, K.; Kim, K. W. First-principles calculation of thermal transport in metal/graphene systems. Phys. Rev. B 2013, 87, 165410.CrossRefGoogle Scholar
  52. [52]
    Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423.CrossRefGoogle Scholar
  53. [53]
    Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.CrossRefGoogle Scholar
  54. [54]
    Xie, G. F.; Shen, Y. L.; Wei, X. L.; Yang, L. W.; Xiao, H. P.; Zhong, J. X.; Zhang, G. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Sci. Rep. 2014, 4, 5085.Google Scholar
  55. [55]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Thermal conduction across graphene cross-linkers. J. Phys. Chem. C 2014, 118, 12541–12547.CrossRefGoogle Scholar
  56. [56]
    Ding, Z. W.; Pei, Q.-X.; Jiang, J.-W.; Zhang, Y.-W. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 2015, 119, 16358–16365.CrossRefGoogle Scholar
  57. [57]
    Liu, X. J.; Zhang, G.; Zhang, Y.-W. Surface-engineered nanoscale diamond films enable remarkable enhancement in thermal conductivity and anisotropy. Carbon 2015, 94, 760–767.CrossRefGoogle Scholar
  58. [58]
    Sergeev, A. V. Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 1998, 58, R10199.CrossRefGoogle Scholar
  59. [59]
    Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, 1996.Google Scholar
  60. [60]
    Zhang, G.; Zhang, Y.-W. Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 2015, 91, 382–398.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of High Performance ComputingA*STARSingaporeSingapore

Personalised recommendations