Advertisement

Nano Research

, Volume 9, Issue 8, pp 2364–2371 | Cite as

Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance

  • Yawen Zhan
  • Shanshan Zeng
  • Haidong Bian
  • Zhe Li
  • Zhengtao Xu
  • Jian LuEmail author
  • Yang Yang LiEmail author
Research Article

Abstract

Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes.

Keywords

electrodeposition dealloying metal foams surface enhanced Raman spectroscopy substrates supercapacitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1123_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1255 KB.

References

  1. [1]
    Zhang, J. T.; Li, C. M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016–7031.CrossRefGoogle Scholar
  2. [2]
    Odabaee, M.; Hooman, K. Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 2012, 36, 456–463.CrossRefGoogle Scholar
  3. [3]
    Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.CrossRefGoogle Scholar
  4. [4]
    Li, Y. J.; Li, Z. D.; Han, F. S. Air flow resistance and sound absorption behavior of open-celled aluminum foams with spherical cells. Procedia Mater. Sci. 2014, 4, 187–190.CrossRefGoogle Scholar
  5. [5]
    Leventis, N.; Sotiriou-Leventis, C.; Mohite, D. P.; Larimore, Z. J.; Mang, J. T.; Churu, G.; Lu, H. B. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem. Mater. 2011, 23, 2250–2261.CrossRefGoogle Scholar
  6. [6]
    Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y. P.; Wang, D.-Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B.-J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.CrossRefGoogle Scholar
  7. [7]
    Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597.CrossRefGoogle Scholar
  8. [8]
    Arisetty, S.; Prasad, A. K.; Advani, S. G. Metal foams as flow field and gas diffusion layer in direct methanol fuel cells. J. Power Sources 2007, 165, 49–57.CrossRefGoogle Scholar
  9. [9]
    Xie, J.; Yang, X. G.; Han, B. H.; Shao-Horn, Y.; Wang, D. W. Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. ACS Nano 2013, 7, 6337–6345.CrossRefGoogle Scholar
  10. [10]
    Shin, H.-C.; Liu, M. L. Copper foam structures with highly porous nano-structured walls. Chem. Mater. 2004, 16, 5460–5464.CrossRefGoogle Scholar
  11. [11]
    Tappan, B. C.; Steiner, S. A.; Luther, E. P. Nanoporous metal foams. Angew. Chem., Int. Ed. 2010, 49, 4544–4565.CrossRefGoogle Scholar
  12. [12]
    Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.CrossRefGoogle Scholar
  13. [13]
    Wang, H. L.; Gao, Q. M.; Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459.Google Scholar
  14. [14]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  15. [15]
    Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433–3438.CrossRefGoogle Scholar
  16. [16]
    Zheng, X. Y.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A. et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373–1377.CrossRefGoogle Scholar
  17. [17]
    Shin, H. C.; Dong, J.; Liu, M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 2003, 15, 1610–1614.CrossRefGoogle Scholar
  18. [18]
    Kim, J.-H.; Kim, R.-H.; Kwon, H.-S. Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochem. Commun. 2008, 10, 1148–1151.CrossRefGoogle Scholar
  19. [19]
    Zhu, Y.; Li, Z.; Chen, M.; Cooper, H. M.; Lu, G. Q.; Xu, Z. P. Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem. Mater. 2012, 24, 421–423.CrossRefGoogle Scholar
  20. [20]
    Zhang, Q. B.; Xu, D. G.; Hung, T. F.; Zhang, K. L. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology 2013, 24, 065602.CrossRefGoogle Scholar
  21. [21]
    Guan, C.; Liu, J. P.; Cheng, C. W.; Li, H. X.; Li, X. L.; Zhou, W. W.; Zhang, H.; Fan, H. J. Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 2011, 4, 4496–4499.CrossRefGoogle Scholar
  22. [22]
    Dai, H.-B.; Liang, Y.; Wang, P.; Cheng, H.-M. Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. J. Power Sources 2008, 177, 17–23.CrossRefGoogle Scholar
  23. [23]
    Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918–922.CrossRefGoogle Scholar
  24. [24]
    Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569–4573.CrossRefGoogle Scholar
  25. [25]
    Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional selfsupported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.CrossRefGoogle Scholar
  26. [26]
    Liu, K. S.; Jiang, L. Metallic surfaces with special wettability. Nanoscale 2011, 3, 825–838.CrossRefGoogle Scholar
  27. [27]
    Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211–1217.CrossRefGoogle Scholar
  28. [28]
    Jiang, X. C.; Herricks, T.; Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338.CrossRefGoogle Scholar
  29. [29]
    Li, Y. H.; Chang, S.; Liu, X. L.; Huang, J. C.; Yin, J. L.; Wang, G. L.; Cao, D. X. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim. Acta 2012, 85, 393–398.CrossRefGoogle Scholar
  30. [30]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center of Super-Diamond and Advanced Films (COSDAF)City University of Hong KongKowloon, Hong KongChina
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloon, Hong KongChina
  3. 3.Department of Chemistry and BiologyCity University of Hong KongKowloon, Hong KongChina
  4. 4.Department of Mechanical and Biomedical EngineeringCity University of Hong KongKowloon, Hong KongChina
  5. 5.Centre for Advanced Structural MaterialsCity University of Hong Kong Shenzhen Research InstituteShenzhenChina
  6. 6.City University of Hong Kong Shenzhen Research InstituteShenzhenChina

Personalised recommendations