Advertisement

Nano Research

, Volume 9, Issue 8, pp 2354–2363 | Cite as

Ultrathin planar broadband absorber through effective medium design

  • Dong Liu
  • Haitong Yu
  • Zhen Yang
  • Yuanyuan DuanEmail author
Research Article

Abstract

Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material, fabrication, and system cost. Here, we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers. The absorber consists of two ultrathin absorbing dielectrics to design an effective absorbing medium, a transparent layer, and metallic substrate. Compared with previous studies, this strategy provides another dimension of freedom to enhance optical absorption; therefore, destructive interference can be realized over a broad spectrum. To demonstrate the power and simplicity of this strategy, we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge, 10-nm-thick Ti, and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods. Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm. As an application example, we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 °C, thus demonstrating its potential in solar thermal systems. The effective medium design strategy is general and allows material versatility, suggesting possible applications in real-time optical manipulation using dynamic materials.

Keywords

ultrathin planar film broadband absorber effective medium design solar energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1122_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 2618 KB.

References

  1. [1]
    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 2014, 511, 334–337.CrossRefGoogle Scholar
  2. [2]
    Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.CrossRefGoogle Scholar
  3. [3]
    Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.CrossRefGoogle Scholar
  4. [4]
    Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42–49.CrossRefGoogle Scholar
  5. [5]
    Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.CrossRefGoogle Scholar
  6. [6]
    Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nano-structured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.CrossRefGoogle Scholar
  7. [7]
    Park, J.; Kang, J. H.; Vasudev, A. P.; Schoen, D. T.; Kim, H.; Hasman, E.; Brongersma, M. L. Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate. ACS Photonics 2014, 1, 812–821.CrossRefGoogle Scholar
  8. [8]
    Park, J.; Kim, S. J.; Brongersma, M. L. Condition for unity absorption in an ultrathin and highly lossy film in a Gires–Tournois interferometer configuration. Opt. Lett. 2015, 40, 1960–1963.CrossRefGoogle Scholar
  9. [9]
    Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737–2743.CrossRefGoogle Scholar
  10. [10]
    Kats, M. A.; Byrnes, S. J.; Blanchard, R.; Kolle, M.; Genevet, P.; Aizenberg, J.; Capasso, F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013, 103, 101104.CrossRefGoogle Scholar
  11. [11]
    Lee, K. T.; Lee, J. Y.; Seo, S.; Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 2014, 3, e215.CrossRefGoogle Scholar
  12. [12]
    Lee, J. Y.; Lee, K. T.; Seo, S.; Guo, L. J. Decorative power generating panels creating angle insensitive transmissive colors. Sci. Rep. 2014, 4, 4192.Google Scholar
  13. [13]
    Han, Q.; Fu, Y. Q.; Jin, L.; Zhao, J. J.; Xu, Z. W.; Fang, F. Z.; Gao, J. S.; Yu, W. X. Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 2015, 8, 2216–2222.CrossRefGoogle Scholar
  14. [14]
    Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959–7965.CrossRefGoogle Scholar
  15. [15]
    Chou, J. B.; Yeng, Y. X.; Lee, Y. E.; Lenert, A.; Rinnerbauer, V.; Celanovic, I.; Soljačić, M.; Fang, N. X.; Wang, E. N.; Kim, S. G. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 2014, 26, 8041–8045.CrossRefGoogle Scholar
  16. [16]
    Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585–4591.CrossRefGoogle Scholar
  17. [17]
    Liu, D.; Bierman, D. M.; Lenert, A.; Yu, H. T.; Yang, Z.; Wang, E. N.; Duan, Y. Y. Ultrathin planar hematite film for solar photoelectrochemical water splitting. Opt. Express 2015, 23, A1491–A1498.CrossRefGoogle Scholar
  18. [18]
    Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999.CrossRefGoogle Scholar
  19. [19]
    Giovampaola, C. D.; Engheta, N. Digital metamaterials. Nat. Mater. 2014, 13, 1115–1121.CrossRefGoogle Scholar
  20. [20]
    RREDC. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed Oct, 2015).Google Scholar
  21. [21]
    Yang, C. Y.; Ji, C. G.; Shen, W. D.; Lee, K. T.; Zhang, Y. G.; Liu, X.; Guo, L. J. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics 2016, 3, 590–596.CrossRefGoogle Scholar
  22. [22]
    Yao, Y.; Kats, M. A.; Shankar, R.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett. 2014, 14, 214–219.CrossRefGoogle Scholar
  23. [23]
    Zhu, Y. Y.; Antao, D. S.; Xiao, R.; Wang, E. N. Real-time manipulation with magnetically tunable structures. Adv. Mater. 2014, 26, 6442–6446.CrossRefGoogle Scholar
  24. [24]
    Manjavacas, A.; de Abajo, F. J. G. Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 2014, 5, 3548.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dong Liu
    • 1
    • 2
  • Haitong Yu
    • 2
  • Zhen Yang
    • 2
  • Yuanyuan Duan
    • 2
    Email author
  1. 1.School of Energy and Power EngineeringNanjing University of Science & TechnologyNanjingChina
  2. 2.Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Key Laboratory for CO2 Utilization and Reduction TechnologyTsinghua UniversityBeijingChina

Personalised recommendations