Nano Research

, Volume 9, Issue 8, pp 2347–2353 | Cite as

Engineering magnetic nanostructures with inverse hysteresis loops

  • Beatriz Mora
  • Nastassia Soriano
  • Carolina Redondo
  • Alberto Arteche
  • David Navas
  • Rafael MoralesEmail author
Research Article


Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations, which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science. In this study, shallow nanostructure-patterned thin films were designed to present inverse magnetization curves, i.e., an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence. This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer. Patterned NiFe thin films with trench depths between 15%–25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis. A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior. The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering.


magnetic nanostructures magnetic patterning effects inverted loops negative coercivity negative remanence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1121_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1027 KB.


  1. [1]
    Hu, Y.; Zhang, Z. J.; Zhou, Q.; Liu, W.; Li, Z. C.; Meng, D. Q. Realignment of slanted Fe nanorods on silicon substrates by a strong magnetic field. Nano Res. 2010, 3, 438–443.CrossRefGoogle Scholar
  2. [2]
    Lavrijsen, R.; Lee, J.-H.; Fernández-Pacheco, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 2013, 493, 647–650.CrossRefGoogle Scholar
  3. [3]
    Qiu, H.-J.; Liu, L.; Mu, Y.-P.; Zhang, H.-J.; Wang, Y. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 2015, 8, 321–339.CrossRefGoogle Scholar
  4. [4]
    Li, W. M.; Wong, S. K.; Herng, T. S.; Yap, L. K.; Sim, C. H.; Yang, Z. C.; Chen, Y. J.; Shi, J. Z.; Han, G. C.; Xue, J. M. et al. Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions. Nano Res. 2015, 8, 3639–3650.CrossRefGoogle Scholar
  5. [5]
    Zhang, M. L.; Earhart, C. M.; Ooi, C.; Wilson, R. J.; Tang, M.; Wang, S. X. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 2013, 6, 745–751.CrossRefGoogle Scholar
  6. [6]
    Emori, S.; Bauer, U.; Ahn, S.-M.; Martinez, E.; Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 2013, 12, 611–616.CrossRefGoogle Scholar
  7. [7]
    Morales, R.; Kovylina, M.; Schuller, I. K.; Labarta, A.; Batlle, X. Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units. Appl. Phys. Lett. 2014, 104, 032401.CrossRefGoogle Scholar
  8. [8]
    Guite, C.; Kerk, I. S.; Sekhar, M. C.; Ramu, M.; Goolaup, S.; Lew, W. S. All-electrical deterministic single domain wall generation for on-chip applications. Sci. Rep. 2014, 4, 7459.CrossRefGoogle Scholar
  9. [9]
    Yang, S.-H.; Ryu, K.-S.; Parkin, S. Domain-wall velocities of up to 750 m·s–1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226.CrossRefGoogle Scholar
  10. [10]
    Chang, C.-A. Magnetization of (100) Cu-Ni, (100) Cu-Co, and (100) Ni-Co superlattices deposited on silicon using a Cu seed layer. Appl. Phys. Lett. 1990, 57, 297–299.CrossRefGoogle Scholar
  11. [11]
    Beaujour, J.-M. L.; Gordeev, S. N.; Bowden, G. J.; de Groot, P. A. J.; Rainford, B. D.; Ward, R. C. C.; Wells, M. R. Negative coercivity in epitaxially grown (110) DyFe2/YFe2 superlattices. Appl. Phys. Lett. 2001, 78, 964–966.CrossRefGoogle Scholar
  12. [12]
    Ziese, M.; Vrejoiu, I.; Pippel, E.; Nikulina, E.; Hesse, D. Magnetic properties of Pr0.7Ca0.3MnO3/SrRuO3 superlattices. Appl. Phys. Lett. 2011, 98, 132504.CrossRefGoogle Scholar
  13. [13]
    Kim, D.; Kim, C.; Kim, C.-O.; Yoon, S. S.; Naka, M.; Tsunoda, M.; Takahashi, M. Negative coercivity characteristics in antiferromagnetic coupled hard/soft multilayers. J. Magn. Magn. Mater. 2006, 304, e356–e358.CrossRefGoogle Scholar
  14. [14]
    Martin, K. N.; Wang, K.; Bowden, G. J.; Zhukov, A. A.; de Groot, P. A. J.; Zimmermann, J. P.; Fangohr, H.; Ward, R. C. C. Exchange spring driven spin flop transition in ErFe2/YFe2 multilayers. Appl. Phys. Lett. 2006, 89, 132511.CrossRefGoogle Scholar
  15. [15]
    Takanashi, K.; Kurokawa, H.; Fujimori, H. A novel hysteresis loop and indirect exchange coupling in Co/Pt/Gd/Pt multilayer films. Appl. Phys. Lett. 1993, 63, 1585–1587.CrossRefGoogle Scholar
  16. [16]
    Wu, Y. Z.; Dong, G. S.; Jin, X. F. Negative magnetic remanence in Co/Mn/Co grown on GaAs(001). Phys. Rev. B 2001, 64, 214406.CrossRefGoogle Scholar
  17. [17]
    Barth, A.; Treubel, F.; Marszałek, M.; Evenson, W.; Hellwig, O.; Borschel, C.; Albrecht, M.; Schatz, G. Magnetic coupling in Gd/Ni bilayers. J. Phys. Condens. Matter 2008, 20, 395232.CrossRefGoogle Scholar
  18. [18]
    Demirtas, S.; Hossu, M. R.; Arikan, M.; Koymen, A. R.; Salamon, M. B. Tunable negative and positive coercivity for Sm Co/(Co/Gd) exchange springs investigated with SQUID magnetometry. Phys. Rev. B 2007, 76, 214430.CrossRefGoogle Scholar
  19. [19]
    Valvidares, S. M.; Álvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. Inverted hysteresis loops in magnetically coupled bilayers with uniaxial competing anisotropies: Theory and experiments. Phys. Rev. B 2001, 64, 134423.CrossRefGoogle Scholar
  20. [20]
    Álvarez-Prado, L. M.; Alameda, J. M. Magnetic characterization of exchange-coupled thin films having competing anisotropies. J. Magn. Magn. Mater. 2007, 316, e872–e875.CrossRefGoogle Scholar
  21. [21]
    Zheng, R. K.; Liu, H.; Wang, Y.; Zhang, X. X. Inverted hysteresis in exchange biased Cr2O3 coated CrO2 particles. J. Appl. Phys. 2004, 96, 5370–5372.CrossRefGoogle Scholar
  22. [22]
    Yang, J.; Kim, J.; Lee, J.; Woo, S.; Kwak, J.; Hong, J.; Jung, M. Inverted hysteresis loops observed in a randomly distributed cobalt nanoparticle system. Phys. Rev. B 2008, 78, 094415.CrossRefGoogle Scholar
  23. [23]
    Haycock, P. W.; Chioncel, M. F.; Shah, J. Remanence studies of cobalt thin films exhibiting inverse hysteresis. J. Magn. Magn. Mater. 2002, 242–245, 1057–1060.CrossRefGoogle Scholar
  24. [24]
    van Tho, L.; Kim, C. G.; Kim, C. O. Investigation of negative coercivity in one layer formation of soft and hard magnetic materials. J. Appl. Phys. 2008, 103, 07B906.CrossRefGoogle Scholar
  25. [25]
    Chun, B. S.; Kim, S. D.; Kim, Y. S.; Hwang, J. Y.; Kim, S. S.; Rhee, J. R.; Kim, T. W.; Hong, J. P.; Jung, M. H.; Kim, Y. K. Effects of Co addition on microstructure and magnetic properties of ferromagnetic CoFeSiB alloy films. Acta Mater. 2010, 58, 2836–2846.CrossRefGoogle Scholar
  26. [26]
    Cowburn, R. P. Property variation with shape in magnetic nanoelements. J. Phys. D-Appl. Phys. 2000, 33, R1.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Beatriz Mora
    • 1
  • Nastassia Soriano
    • 1
  • Carolina Redondo
    • 1
  • Alberto Arteche
    • 1
  • David Navas
    • 2
  • Rafael Morales
    • 3
    • 4
    Email author
  1. 1.Dpto. de Química-FísicaUniversidad del País Vasco UPV/EHULeioaSpain
  2. 2.IFIMUP-IN and Dept. Fisica e AstronomiaUniversidade do PortoPortoPortugal
  3. 3.Dpto. de Química-Física & BCMaterialsUniversidad del País Vasco UPV/EHULeioaSpain
  4. 4.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations