Nano Research

, Volume 9, Issue 8, pp 2338–2346 | Cite as

Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells

  • Mingqi Yu
  • Jiamin Su
  • Guofeng WangEmail author
  • Yadong Li
Research Article


Y(OH)3:Eu3+ nanotubes were synthesized using a facile hydrothermal method, and then, Pt particles were grown on the surface of the nanotubes using a combination of vacuum extraction and annealing. The resulting Pt/Y2O3:Eu3+ composite nanotubes not only exhibited enhanced red luminescence under 255- or 468-nm excitation but could also be used to improve the efficiency of dye-sensitized solar cells, resulting in an efficiency of 8.33%, which represents a significant enhancement of 11.96% compared with a solar cell without the composite nanotubes. Electrochemical impedance spectroscopy results indicated that the interfacial resistance of the TiO2–dye|I 3 /I electrolyte interface of the TiO2–Pt/Y2O3:Eu3+ composite cell was much smaller than that of a pure TiO2 cell. In addition, the TiO2–Pt/Y2O3:Eu3+ composite cell exhibited a shorter electron transport time and longer electron recombination time than the pure TiO2 cell.


Pt/Y2O3:Eu3+ nanocrystals luminescence dye-sensitized solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1120_MOESM1_ESM.pdf (822 kb)
Supplementary material, approximately 823 KB.


  1. [1]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefGoogle Scholar
  2. [2]
    Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.CrossRefGoogle Scholar
  3. [3]
    Li, G. G.; Tian, Y.; Zhao, Y.; Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688–8713.CrossRefGoogle Scholar
  4. [4]
    Zhang, J.; Yuan, Y.; Wang, Y.; Sun, F. F.; Liang, G. L.; Jiang, Z.; Yu, S. H. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 2015, 8, 2329–2339.CrossRefGoogle Scholar
  5. [5]
    Lin, L. W.; Sun, X. Y.; Jiang, Y.; He, Y. H. Sol-hydrothermal synthesis and optical properties of Eu3+, Tb3+-codoped one-dimensional strontium germanate full color nano-phosphors Nanoscale 2013, 5, 12518–12531.CrossRefGoogle Scholar
  6. [6]
    Kaczmarek, A. M.; van Hecke, K.; van Deun, R. Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials. Chem. Soc. Rev. 2015, 44, 2032–2059.CrossRefGoogle Scholar
  7. [7]
    Xia, Z. G.; Liu, R. S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 2012, 116, 15604–15609.CrossRefGoogle Scholar
  8. [8]
    Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374.CrossRefGoogle Scholar
  9. [9]
    Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.CrossRefGoogle Scholar
  10. [10]
    Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17, R1.CrossRefGoogle Scholar
  11. [11]
    Blasse, G.; Grabmaier, B. C. Energy transfer. In Luminescent Materials; Springer: Berlin, Heidelberg, 1994; pp 91–107.CrossRefGoogle Scholar
  12. [12]
    Nelson, J. A.; Brant, E. L.; Wagner, M. J. Nanocrystalline Y2O3: Eu phosphors prepared by alkalide reduction. Chem. Mater. 2003, 15, 688–693.CrossRefGoogle Scholar
  13. [13]
    Wang, L. M.; Li, X. Y.; Li, Z. Q.; Chu, W. S.; Li, R. F.; Lin, K.; Qian, H. S.; Wang, Y.; Wu, C. F.; Li, J. et al. A new cubic phase for a NaYF4 host matrix offering high upconversion luminescence efficiency. Adv. Mater. 2015, 27, 5528–5533.CrossRefGoogle Scholar
  14. [14]
    Hebbink, G. A.; Stouwdam, J. W.; Reinhoudt, D. N.; van Veggel, F. C. J. M. Lanthanide(III)-doped nanoparticles that emit in the near-infrared. Adv. Mater. 2002, 14, 1147–1150.CrossRefGoogle Scholar
  15. [15]
    Buch, Z.; Kumar, V.; Mamgain, H.; Chawla, S. Silver nanoprism enhanced fluorescence in YVO4:Eu3+ nanoparticles. Chem. Commun. 2013, 49, 9485–9487.CrossRefGoogle Scholar
  16. [16]
    Lupan, O.; Viana, B.; Pauporté, T.; Dhaouadi, M.; Pellé, F.; Devys, L.; Gacoin, T. Controlled mixed violet–blue–red electroluminescence from Eu: Nano-phosphors/ZnO-nanowires/p-gan light-emitting diodes. J. Phys. Chem. C 2013, 117, 26768–26775.CrossRefGoogle Scholar
  17. [17]
    Li, M.; Selvin, P. R. Luminescent polyaminocarboxylate chelates of terbium and europium: The effect of chelate structure. J. Am. Chem. Soc. 1995, 117, 8132–8138.CrossRefGoogle Scholar
  18. [18]
    Yang, D.; Yang, G. X.; Wang, X. M.; Lv, R. C.; Gai, S. L.; He, F.; Gulzar, A.; Yang, P. P. Y2O3:Yb, Er@mSiO2–CuxS double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. Nanoscale 2015, 7, 12180–12191.CrossRefGoogle Scholar
  19. [19]
    Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.CrossRefGoogle Scholar
  20. [20]
    Su, J. M.; Wang, G. F.; Li, Y.; Li, R.; Xu, B. Y.; Wang, Y. P.; Zhang, J. S. Synthesis, novel luminescence properties, and surface-enhanced Raman scattering of Au/Y2O3:Eu3+ composite nanotubes. Dalton Trans. 2014, 43, 14720–14725.CrossRefGoogle Scholar
  21. [21]
    O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2 films. Nature 1991, 353, 737–740.CrossRefGoogle Scholar
  22. [22]
    Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dyesensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247.CrossRefGoogle Scholar
  23. [23]
    Zhang, Y.; Zhang, B.; Peng, X.; Liu, L.; Dong, S.; Lin, L. P.; Chen, S.; Meng, S. X.; Feng, Y. Q. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Res. 2015, 8, 3830–3841.CrossRefGoogle Scholar
  24. [24]
    Brown, M. D.; Suteewong, T.; Kumar, R. S.; D'Innocenzo, V.; Petrozza, A.; Lee, M. M.; Wiesner, U.; Snaith, H. J. Plasmonic dye-sensitized solar cells using core–shell metal−insulator nanoparticles. Nano Lett. 2011, 11, 438–445.CrossRefGoogle Scholar
  25. [25]
    Wu, W. Q.; Xu, Y. F.; Rao, H. S.; Feng, H. L.; Su, C. Y.; Kuang, D. B. Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells. Angew. Chem., Int. Ed. 2014, 53, 4816–4821.CrossRefGoogle Scholar
  26. [26]
    Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl–, Br–, I–, CN–, and SCN–) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390.CrossRefGoogle Scholar
  27. [27]
    Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M. K.; Gratzel, M. Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc. 2006, 128, 16701–16707.CrossRefGoogle Scholar
  28. [28]
    Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.CrossRefGoogle Scholar
  29. [29]
    Thapa, A.; Zai, J. T.; Elbonhy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.CrossRefGoogle Scholar
  30. [30]
    Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.CrossRefGoogle Scholar
  31. [31]
    Liang, C. H.; Liu, C. S.; Li, F. B.; Wu, F. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chem. Eng. J. 2009, 147, 219–225.CrossRefGoogle Scholar
  32. [32]
    Shi, J. W.; Zheng, J. T.; Wu, P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles. J. Hazard. Mater. 2009, 161, 416–422.CrossRefGoogle Scholar
  33. [33]
    Smith, W.; Mao, S.; Lu, G. H.; Catlett, A.; Chen, J. H.; Zhao, Y. P. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 2010, 485, 171–175.CrossRefGoogle Scholar
  34. [34]
    Fang, X. L.; Li, M. Y.; Guo, K. M.; Zhu, Y. D.; Hu, Z. Q.; Liu, X. L.; Chen, B. L.; Zhao, X. Z. Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes. Electrochim. Acta 2012, 65, 174–178.CrossRefGoogle Scholar
  35. [35]
    Xu, F.; Chen, J.; Wu, X.; Zhang, Y.; Wang, Y. X.; Sun, J.; Bi, H. C.; Lei, W.; Ni, Y. R.; Sun, L. T. Graphene scaffolds enhanced photogenerated electron transport in ZnO photoanodes for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 8619–8627.CrossRefGoogle Scholar
  36. [36]
    Wang, G. F.; Li, Y.; Jiang, B. J.; Pan, K.; Fan, N. Y.; Feng, Q. M.; Chen, Y. J.; Tian, C. G. In situ synthesis and photoluminescence of Eu3+ doped Y(OH)3@β-NaYF4 core–shell nanotubes. Chem. Commun. 2011, 47, 8019–8021.CrossRefGoogle Scholar
  37. [37]
    Wang, P.; Dai, Q.; Zakeeruddin, S. M.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.CrossRefGoogle Scholar
  38. [38]
    Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations