Nano Research

, Volume 9, Issue 8, pp 2303–2318 | Cite as

Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods

  • Boris KhlebtsovEmail author
  • Vitaly Khanadeev
  • Nikolai KhlebtsovEmail author
Research Article


The design and synthesis of plasmonic nanoparticles with Raman-active molecules embedded inside them are of significant interest for sensing and imaging applications. However, direct synthesis of such nanostructures with controllable shape, size, and plasmonic properties remains extremely challenging. Here we report on the preparation of uniform Au@Ag core/shell nanorods with controllable Ag shells of 1 to 25 nm in thickness. 1,4-Aminothiophenol (4-ATP) molecules, used as the Raman reporters, were located between the Au core and the Ag shell. Successful embedding of reporter molecules inside the core/shell nanoparticles was confirmed by the absence of selective oxidation of the amino groups, as measured by Raman spectroscopy. The dependence of Raman intensity on the location of the reporter molecules in the inside and outside of the nanorods was studied. The molecules in the interior showed strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to the usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the surface-enhanced Raman scattering (SERS) signal. The findings from this study provide the basis for a novel detection technique of low analyte concentration utilizing the high SERS response of molecules inside the core/shell metal nanostructures. As an example, we show robust SERS detection of thiram fungicide as low as 10−9 M in solutions.


surface-enhanced Raman scattering (SERS) Au@Ag nanorods nanocuboids multipole plasmons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1117_MOESM1_ESM.pdf (5 mb)
Supplementary material, approximately 5100 KB.


  1. [1]
    Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L. Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 1984, 56, 1667–1670.CrossRefGoogle Scholar
  2. [2]
    Bell, S. E. J.; Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 1012–1024.CrossRefGoogle Scholar
  3. [3]
    Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428.CrossRefGoogle Scholar
  4. [4]
    Allgeyer, E. S.; Pongan, A.; Browne, M.; Mason, M. D. Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett. 2009, 9, 3816–3819.CrossRefGoogle Scholar
  5. [5]
    Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.CrossRefGoogle Scholar
  6. [6]
    Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S. Y.; Kim, B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 2010, 10, 1189–1193.CrossRefGoogle Scholar
  7. [7]
    Wang, Y. L.; Seebald, J. L.; Szeto, D. P.; Irudayaraj, J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging. ACS Nano 2010, 4, 4039–4053.CrossRefGoogle Scholar
  8. [8]
    Yuan, H.; Liu, Y.; Fales, A. M.; Li, Y. L.; Liu, J.; Vo-Dinh, T. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal. Chem. 2013, 85, 208–212.CrossRefGoogle Scholar
  9. [9]
    Yuan, H.; Fales, A. M.; Khoury, C. G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J. Raman Spectrosc. 2013, 44, 234–239.CrossRefGoogle Scholar
  10. [10]
    Fales, A. M.; Vo-Dinh, T. Silver embedded nanostars for SERS with internal reference (SENSIR). J. Mater. Chem. C 2015, 3, 7319–7324.CrossRefGoogle Scholar
  11. [11]
    Blaber, M. G.; Schatz, G. C. Extending SERS into the infrared with gold nanosphere dimers. Chem. Commun. 2011, 47, 3769–3771.CrossRefGoogle Scholar
  12. [12]
    Pelton, M.; Aizpurua, J.; Bryant, G. Metal-nanoparticle plasmonics. Laser Photon. Rev. 2008, 2, 136–159.CrossRefGoogle Scholar
  13. [13]
    Gandra, N.; Singamaneni, S. Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv. Mater. 2013, 25, 1022–1027.CrossRefGoogle Scholar
  14. [14]
    Lim, D.-K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.CrossRefGoogle Scholar
  15. [15]
    Zhao, B.; Shen, J. L.; Chen, S. X.; Wang, D. F.; Li, F.; Mathur, S.; Song, S. P.; Fan, C. H. Gold nanostructures encoded by non-fluorescent small molecules in polyAmediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. Chem. Sci. 2014, 5, 4460–4466.CrossRefGoogle Scholar
  16. [16]
    Song, J. B.; Duan, B.; Wang, C. X.; Zhou, J. J.; Pu, L.; Fang, Z.; Wang, P.; Lim, T. T.; Duan, H. W. SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes. J. Am. Chem. Soc. 2014, 136, 6838–6841.CrossRefGoogle Scholar
  17. [17]
    Ayala-Orozco, C.; Liu, J. G.; Knight, M. W.; Wang, Y. M.; Day, J. K.; Nordlander, P.; Halas, N. J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014, 14, 2926–2933.CrossRefGoogle Scholar
  18. [18]
    Kang, J. W.; So, P. T. C.; Dasari, R. R.; Lim, D.-K. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 2015, 15, 1766–1772.CrossRefGoogle Scholar
  19. [19]
    Oh, J.-W.; Lim, D.-K.; Kim, G.-H.; Suh, Y. D. Nam, J.-M. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J. Am. Chem. Soc. 2014, 136, 14052–14059.CrossRefGoogle Scholar
  20. [20]
    Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731–742.CrossRefGoogle Scholar
  21. [21]
    Hwang, J.-H.; Singhal, N. K.; Lim, D.-K.; Nam, J.-M. Au nanocucumbers with interior nanogap for multiple laser wavelength-compatible surface-enhanced Raman scattering. Bull. Korean Chem. Soc. 2015, 36, 882–886.Google Scholar
  22. [22]
    Zhou, Y.; Zhang, P. Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core–shell nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 8791–8794.CrossRefGoogle Scholar
  23. [23]
    Zhou, Y.; Lee, C.; Zhang, J. N.; Zhang, P. Engineering versatile SERS-active nanoparticles by embedding reporters between Au-core/Ag-shell through layer-by-layer deposited polyelectrolytes. J. Mater. Chem. C 2013, 1, 3695–3699.CrossRefGoogle Scholar
  24. [24]
    Pinkhasova, P.; Puccio, B.; Chou, T.; Sukhishvili, S.; Du, H. Noble metal nanostructure both as a SERS nanotag and an analyte probe. Chem. Commun. 2012, 48, 9750–9752.CrossRefGoogle Scholar
  25. [25]
    Shen, W.; Lin, X.; Jiang, C. Y.; Li, C. Y.; Lin, H. X.; Huang, J. T.; Wang, S.; Liu, G. K.; Yan, X. M.; Zhong, Q. L. et al. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem., Int. Ed. 2015, 54, 7308–7312.CrossRefGoogle Scholar
  26. [26]
    Khlebtsov, B. N.; Khanadeev, V. A.; Ye, J.; Sukhorukov, G. B.; Khlebtsov, N. G. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir 2014, 30, 1696–1703.CrossRefGoogle Scholar
  27. [27]
    Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Li, Z. Y.; Chu, W. G.; Feng, L. L.; Zhang, K.; Zhou, W. Y.; Xie, S. S. Gold nanorod-seeded growth of silver nanostructures: From homogeneous coating to anisotropic coating. Langmuir 2008, 24, 3465–3470.CrossRefGoogle Scholar
  28. [28]
    Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.CrossRefGoogle Scholar
  29. [29]
    Bach, R. D.; Su, M.-D.; Schlegel, B. Oxidation of amines and sulfides with hydrogen peroxide and alkyl hydrogen peroxide. The nature of the oxygen-transfer step. J. Am. Chem. Soc. 1994, 116, 5379–5391.CrossRefGoogle Scholar
  30. [30]
    Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G. Observation of extra-high depolarized light scattering spectra from gold nanorods. J. Phys. Chem. C 2008, 112, 12760–12768.CrossRefGoogle Scholar
  31. [31]
    Eustis, S.; El-Sayed, M. A. Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed in homogeneously broadened longitudinal plasmon resonance absorption spectrum. J. Appl. Phys. 2006, 100, 044324.CrossRefGoogle Scholar
  32. [32]
    Okuno, Y.; Nishioka, K.; Kiya, A.; Nakashima, N.; Ishibashi, A.; Niidome, Y. Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2010, 2, 1489–1493.CrossRefGoogle Scholar
  33. [33]
    Tebbe, M.; Kuttner, C.; Mayer, M.; Maennel, M.; Pazos-Perez, N.; König, T. A. F.; Fery, A. Silver-overgrowthinduced changes in intrinsic optical properties of gold nanorods: From noninvasive monitoring of growth kinetics to tailoring internal mirror charges. J. Phys. Chem. C 2015, 119, 9513–9523.CrossRefGoogle Scholar
  34. [34]
    PubChem. (accessed Nov 20, 2015).Google Scholar
  35. [35]
    Hu, X. G.; Wang, T.; Wang, L.; Dong, S. J. Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition. J. Phys. Chem. C 2007, 111, 6962–6969.CrossRefGoogle Scholar
  36. [36]
    Lin, L.; Zapata, M.; Xiong, M.; Liu, Z. H.; Wang, S. S.; Xu, H.; Borisov, A. G.; Gu, H. C.; Nordlander, P.; Aizpurua, J. et al. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core–shell junction to subnanometer. Nano Lett. 2015, 15, 6419–6428.CrossRefGoogle Scholar
  37. [37]
    Khlebtsov, B. N.; Liu, Z. H.; Ye, J.; Khlebtsov, N. G. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. J. Quant. Spectrosc. Radiat. Transfer 2015, 167, 64–75.CrossRefGoogle Scholar
  38. [38]
    Cortie, M. B.; Liu, F. G.; Arnold, M. D.; Niidome, Y. Multimode resonances in silver nanocuboids. Langmuir 2012, 28, 9103–9112.CrossRefGoogle Scholar
  39. [39]
    McMahon, J. M.; Wang, Y. M.; Sherry, L. J.; Van Duyne, R. P.; Marks, L. D.; Gray, S. K.; Schatz, G. C. Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J. Phys. Chem. C 2009, 113, 2731–2735.CrossRefGoogle Scholar
  40. [40]
    Fuchs, R. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 1975, 11, 1732–1740.CrossRefGoogle Scholar
  41. [41]
    Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J. Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200–OP207.Google Scholar
  42. [42]
    Ye, J.; Hutchison, J. A.; Uji-i, H.; Hofkens, J.; Lagae, L.; Maes, G.; Borghs, G.; Van Dorpe, P. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale 2012, 4, 1606–1611.CrossRefGoogle Scholar
  43. [43]
    Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRefGoogle Scholar
  44. [44]
    Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170.CrossRefGoogle Scholar
  45. [45]
    Oo, M. K. K.; Guo, Y. B.; Reddy, K.; Liu, J.; Fan, X. D. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries. Anal. Chem. 2012, 84, 3376–3381.CrossRefGoogle Scholar
  46. [46]
    Hu, Y.; Noelck, S. J.; Drezek, R. A. Symmetry breaking in gold−silica−gold multilayer nanoshells. ACS Nano 2010, 4, 1521–1528.CrossRefGoogle Scholar
  47. [47]
    Mukherjee, S.; Sobhani, H.; Lassiter, J. B.; Bardhan, R.; Nordlander, P.; Halas, N. J. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett. 2010, 10, 2694–2701.CrossRefGoogle Scholar
  48. [48]
    Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 1496–1499.CrossRefGoogle Scholar
  49. [49]
    Scholl, J. A.; García-Etxarri, A.; Koh, A. L.; Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013, 13, 564–569.CrossRefGoogle Scholar
  50. [50]
    Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. When the signal is not from the original molecule to be detected: Chemical transformation of paraaminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246.CrossRefGoogle Scholar
  51. [51]
    Khlebtsov, N. G. T-matrix method in plasmonics: An overview. J. Quant. Spectrosc. Radiat. Transfer 2013, 123, 184–217.CrossRefGoogle Scholar
  52. [52]
    Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—A single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060.CrossRefGoogle Scholar
  53. [53]
    Ray, D. E. Pesticides derived from plants and other organisms. In Handbook of Pesticide Toxicology. Hayes, Jr. W. J.; Laws, Jr. E. R., Eds.; Academic Press: New York, 1991; pp. 10–144.Google Scholar
  54. [54]
    Yang, J.-K.; Kang, H.; Lee, H.; Jo, A.; Jeong, S.; Jeon, S.-J.; Kim, H.-I.; Lee, H.-Y.; Jeong, D. H.; Kim, J.-H. et al. Single-step and rapid growth of silver nanoshells as SERSactive nanostructures for label-free detection of pesticides. ACS Appl. Mater. Interfaces 2014, 6, 12541–12549.CrossRefGoogle Scholar
  55. [55]
    Saute, B.; Narayanan, R. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 2011, 136, 527–532.CrossRefGoogle Scholar
  56. [56]
    Kang, J. S.; Hwang, S. Y.; Lee, C. J.; Lee, M. S. SERS of dithiocarbamate pesticides adsorbed on silver surface; Thiram. Bull. Korean Chem. Soc. 2002, 23, 1604–1610.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov National Research State UniversitySaratovRussia

Personalised recommendations