Advertisement

Nano Research

, Volume 9, Issue 8, pp 2294–2302 | Cite as

Size control of SBA-15 by tuning the stirring speed for the formation of CMK-3 with distinct adsorption performance

  • Qi Wang
  • Zhencai Wang
  • Tianhao Zheng
  • Xiongping Zhou
  • Wei ChenEmail author
  • Dekun Ma
  • Yun Yang
  • Shaoming HuangEmail author
Research Article

Abstract

Controlling the size of SBA-15 can be beneficial for exploiting CMK-3, which has excellent structural parameters, for better performance in adsorption and/or catalytic processes. In this study, the width of freestanding SBA-15 rods was readily and successfully regulated by simply altering the stirring power during the synthesis. A higher stirring rate produced SBA-15 rods with larger width. Then, the size of the CMK-3 rods was adjusted by duplication of the different-sized SBA-15. The results show that the larger sized CMK-3 has higher specific surface area and pore volume, which led to a higher adsorption capacity and a faster adsorption rate. It is believed that the synthetic method reported here is powerful for developing better mesoporous carbon for application in water purification and catalysis.

Keywords

SBA-15 CMK-3 size control adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1116_MOESM1_ESM.pdf (456 kb)
Supplementary material, approximately 457 KB.

References

  1. [1]
    Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.CrossRefGoogle Scholar
  2. [2]
    Zhang, Y. X.; Xu, S. C.; Luo, Y. Y.; Pan, S. S.; Ding, H. L.; Li, G. H. Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J. Mater. Chem. 2011, 21, 3664–3671.CrossRefGoogle Scholar
  3. [3]
    Hu, L. X.; Dang, S. T.; Yang, X. P.; Dai, J. S. Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol. Micropor. Mesopor. Mater. 2012, 147, 188–193.CrossRefGoogle Scholar
  4. [4]
    Dong, Y.; Lin, H. M.; Qu, F. Y. Synthesis of ferromagnetic ordered mesoporous carbons for bulky dye molecules adsorption. Chem. Eng. J. 2012, 193-194, 169–177.CrossRefGoogle Scholar
  5. [5]
    Wang, T. B.; Liang, L.; Wang, R. W.; Jiang, Y. Q.; Lin, K. F.; Sun, J. M. Magnetic mesoporous carbon for efficient removal of organic pollutants. Adsorption 2012, 18, 439–444.CrossRefGoogle Scholar
  6. [6]
    Tian, Y.; Wang, X. F.; Pan, Y. F. Simple synthesis of Nicontaining ordered mesoporous carbons and their adsorption/desorption of methylene orange. J. Hazard. Mater. 2012, 213–214, 361–368.CrossRefGoogle Scholar
  7. [7]
    Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.CrossRefGoogle Scholar
  8. [8]
    Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.CrossRefGoogle Scholar
  9. [9]
    Huang, S. S.; Yang, P. P.; Cheng, Z. Y.; Li, C. X.; Fan, Y.; Kong, D. Y.; Lin, J. Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting. J. Phys. Chem. C 2008, 112, 7130–7137.CrossRefGoogle Scholar
  10. [10]
    Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.CrossRefGoogle Scholar
  11. [11]
    Luo, G. F.; Chen, W. H.; Jia, H. Z.; Sun, Y. X.; Cheng, H.; Zhuo, R. X.; Zhang, X. Z. An indicator-guided photocontrolled drug delivery system based on mesoporous silica/gold nanocomposites. Nano Res. 2015, 8, 1893–1905.CrossRefGoogle Scholar
  12. [12]
    Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q. et al. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem., Int. Ed. 2011, 50, 3725–3729.CrossRefGoogle Scholar
  13. [13]
    Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968.CrossRefGoogle Scholar
  14. [14]
    Sayari, A.; Hamoudi, S.; Yang, Y. Applications of poreexpanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem. Mater. 2005, 17, 212–216.CrossRefGoogle Scholar
  15. [15]
    Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.CrossRefGoogle Scholar
  16. [16]
    Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.CrossRefGoogle Scholar
  17. [17]
    Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.CrossRefGoogle Scholar
  18. [18]
    Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713.CrossRefGoogle Scholar
  19. [19]
    Wu, Z. X.; Lv, Y. Y.; Xia, Y. Y.; Webley, P. A.; Zhao, D. Y. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2012, 134, 2236–2245.CrossRefGoogle Scholar
  20. [20]
    Xia, K. S.; Gao, Q. M.; Wu, C. D.; Song, S. Q.; Ruan, M. L. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 2007, 45, 1989–1996.CrossRefGoogle Scholar
  21. [21]
    Giasafaki, D.; Charalambopulou, G.; Bourlinos, A.; Stubos, A.; Goumis, D.; Steriotis, T. A hydrogen sorption study on a Pd-doped CMK-3 type ordered mesoporous carbon. Adsorption 2013, 19, 803–811.CrossRefGoogle Scholar
  22. [22]
    Wang, H. J.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki O.; Yamauchi, Y. Shape- and size-controlled synthesis in hard templates: Sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. J. Am. Chem. Soc. 2011, 133, 14526–14529.CrossRefGoogle Scholar
  23. [23]
    Zhao, D. Y.; Sun, J. Y.; Li, Q. Z.; Stucky, G. D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 2000, 12, 275–279.CrossRefGoogle Scholar
  24. [24]
    Kang, S.; Chae, Y. B.; Yu, J. S. HCl as a key parameter in size-tunable synthesis of SBA-15 silica with rodlike morphology. J. Nanosci. Nanotechnol. 2009, 9, 527–532.CrossRefGoogle Scholar
  25. [25]
    Yu, C.; Fan, J.; Tian, B.; Zhao, D. Y.; Stucky, G. D. Highyield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 2002, 14, 1742–1745.CrossRefGoogle Scholar
  26. [26]
    Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky G. D.; Zhao, D. Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater. 2003, 2, 159–163.CrossRefGoogle Scholar
  27. [27]
    Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc. 2002, 124, 4556–4557.CrossRefGoogle Scholar
  28. [28]
    Zhao, D. Y.; Yang, P. D.; Margolese, D. I.; Stucky, G. D. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chem. Commun. 1998, 2499–2500.Google Scholar
  29. [29]
    Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chem. Commun. 2001, 2726–2727.Google Scholar
  30. [30]
    Chen, L.; Wang, Y. M.; He, M. Y. Morphological control of mesoporous silica SBA-15 synthesized at low temperature without additives. J. Porous Mater. 2011, 18, 211–216.CrossRefGoogle Scholar
  31. [31]
    Tian, B. Z.; Liu, X. Y.; Solovyov, L. A.; Liu, Z.; Yang, H. F.; Zhang, Z. D.; Xie, S. H.; Zhang, F. Q.; Tu, B.; Yu, C. Z. et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 2004, 126, 865–875.CrossRefGoogle Scholar
  32. [32]
    Ma, L. Q.; Zhai, S. R.; Liu, N.; Zhai, B.; An, Q. D. Controlled fabrication and application of platelet SBA-15 materials. Prog. Chem. 2012, 24, 471–482.Google Scholar
  33. [33]
    Sayari, A.; Han, B.-H.; Yong, Y. Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 2004, 126, 14348–14349.CrossRefGoogle Scholar
  34. [34]
    Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem. Mater. 2004, 16, 899–905.CrossRefGoogle Scholar
  35. [35]
    Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Micropor. Mater. 1993, 2, 27–34.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qi Wang
    • 1
  • Zhencai Wang
    • 1
  • Tianhao Zheng
    • 1
  • Xiongping Zhou
    • 1
  • Wei Chen
    • 1
    Email author
  • Dekun Ma
    • 1
  • Yun Yang
    • 1
  • Shaoming Huang
    • 1
    Email author
  1. 1.Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina

Personalised recommendations