Advertisement

Nano Research

, Volume 9, Issue 8, pp 2284–2293 | Cite as

Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production

  • Xiaoyan Ma
  • Jinquan Li
  • Changhua AnEmail author
  • Juan Feng
  • Yuhua Chi
  • Junxue Liu
  • Jun ZhangEmail author
  • Yugang SunEmail author
Research Article

Abstract

The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.

Keywords

MoS2 two-dimensional material water splitting photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1115_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 2.18 MB.
12274_2016_1115_MOESM2_ESM.mp4 (167.2 mb)
Supplementary material, approximately 167 MB.

References

  1. [1]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  2. [2]
    Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.CrossRefGoogle Scholar
  3. [3]
    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.CrossRefGoogle Scholar
  4. [4]
    Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.CrossRefGoogle Scholar
  5. [5]
    Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Domen, K. Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J. Catal. 2006, 243, 303–308.CrossRefGoogle Scholar
  6. [6]
    Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1−xZnx)(N1−xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2006, 110, 4500–4501.CrossRefGoogle Scholar
  7. [7]
    Kato, H.; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285–4292.CrossRefGoogle Scholar
  8. [8]
    Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfac. Electrochem. 1972, 39, 163–184.CrossRefGoogle Scholar
  9. [9]
    Linsebigler, A. L.; Lu, G. Q.; Yates Jr, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.CrossRefGoogle Scholar
  10. [10]
    Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.CrossRefGoogle Scholar
  11. [11]
    Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.CrossRefGoogle Scholar
  12. [12]
    Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.CrossRefGoogle Scholar
  13. [13]
    Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 2002, 106, 9048–9053.CrossRefGoogle Scholar
  14. [14]
    Kitano, M.; Takeuchi, M.; Matsuoka, M.; Thomas, J. M.; Anpo, M. Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal. Today 2007, 120, 133–138.CrossRefGoogle Scholar
  15. [15]
    Peng, Y.; Shang, L.; Cao, Y. T.; Waterhouse, G. I. N.; Zhou, C.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Copper(I) cysteine complexes: Efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. Chem. Commun. 2015, 51, 12556–12559.CrossRefGoogle Scholar
  16. [16]
    Feng, J.; Liu, J. X.; Wei, G. J.; Zhang, J.; Wang, S. T.; Wang, Z. J.; An, C. H. Solar-driven Pt modified hollow structured CdS photocatalyst for efficient hydrogen evolution. RSC Adv. 2014, 4, 36665–36670.CrossRefGoogle Scholar
  17. [17]
    Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.; Wu, G. P.; Li, C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.CrossRefGoogle Scholar
  18. [18]
    Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.CrossRefGoogle Scholar
  19. [19]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  20. [20]
    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.CrossRefGoogle Scholar
  21. [21]
    Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.CrossRefGoogle Scholar
  22. [22]
    Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625–633.CrossRefGoogle Scholar
  23. [23]
    Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.CrossRefGoogle Scholar
  24. [24]
    Meng, F.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.CrossRefGoogle Scholar
  25. [25]
    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.CrossRefGoogle Scholar
  26. [26]
    Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.CrossRefGoogle Scholar
  27. [27]
    Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.CrossRefGoogle Scholar
  28. [28]
    Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem. Commun. 2013, 49, 4965–4967.CrossRefGoogle Scholar
  29. [29]
    Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.CrossRefGoogle Scholar
  30. [30]
    Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.CrossRefGoogle Scholar
  31. [31]
    Topsøe, H.; Clausen, B. S.; Massoth, F. E. Hydrotreating Catalysis; Springer: Berlin Heidelberg, 1996.CrossRefGoogle Scholar
  32. [32]
    Feng, J.; An, C. H.; Dai, L. X.; Liu, J. X.; Wei, G. J.; Bai, S.; Zhang, J.; Xiong, Y. J. Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. Chem. Eng. J. 2016, 283, 351–357.CrossRefGoogle Scholar
  33. [33]
    Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.CrossRefGoogle Scholar
  34. [34]
    Sun, M. Y.; Nelson, A. E.; Adjaye, J. Ab initio DFT study of hydrogen dissociation on MoS2, NiMos, and CoMos: Mechanism, kinetics, and vibrational frequencies. J. Catal. 2005, 233, 411–421.CrossRefGoogle Scholar
  35. [35]
    Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.CrossRefGoogle Scholar
  36. [36]
    Chen, J.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. 2015, 127, 1226–1230.CrossRefGoogle Scholar
  37. [37]
    Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, and College of ScienceChina University of PetroleumQingdaoChina
  2. 2.Department of ChemistryTemple UniversityPhiladelphiaUSA

Personalised recommendations