Nano Research

, Volume 9, Issue 8, pp 2270–2283 | Cite as

Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis

  • Shuguang Wang
  • Zhentao Cui
  • Jinwen Qin
  • Minhua CaoEmail author
Research Article


Rational design and simple synthesis of one-dimensional nanofibers with high specific surface areas and hierarchically porous structures are still challenging. In the present work, a novel strategy utilizing a thermally removable template was developed to synthesize hierarchically porous N-doped carbon nanofibers (HP-NCNFs) through the use of simple electrospinning technology coupled with subsequent pyrolysis. During the pyrolysis process, ZnO nanoparticles can be formed in situ and act as a thermally removable template due to their decomposition and sublimation under high-temperature conditions. The resulting HP-NCNFs have lengths of up to hundreds of micrometers with an average diameter of 300 nm and possess a hierarchically porous structure throughout. Such unique structures endow HP-NCNFs with a high specific surface area of up to 829.5 m2·g–1, which is 2.6 times higher than that (323.2 m2·g–1) of conventional N-doped carbon nanofibers (NCNFs). Compared with conventional NCNFs, the HP-NCNF catalyst exhibited greatly enhanced catalytic performance and improved kinetics for the oxygen reduction reaction (ORR) in alkaline media. Moreover, the HP-NCNFs even showed better stability and stronger methanol crossover effect tolerance than the commercial Pt-C catalyst. The optimized ORR performance can be attributed to the synergetic contribution of continuous and three-dimensional (3D) cross-linked structures, graphene-like structure on the edge of the HP-NCNFs, high specific surface area, and a hierarchically porous structure.


zinc oxide hierarchically porous structure thermally removable formed in situ oxygen reduction reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1114_MOESM1_ESM.pdf (3.3 mb)
Supplementary material, approximately 3411 KB.


  1. [1]
    Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.CrossRefGoogle Scholar
  2. [2]
    Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.CrossRefGoogle Scholar
  3. [3]
    Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.CrossRefGoogle Scholar
  4. [4]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  5. [5]
    Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H. S.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951.CrossRefGoogle Scholar
  6. [6]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  7. [7]
    Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  8. [8]
    Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.CrossRefGoogle Scholar
  9. [9]
    Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.CrossRefGoogle Scholar
  10. [10]
    Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement-induced synthesis of pyridinic- and pyrrolicnitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.CrossRefGoogle Scholar
  11. [11]
    Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49, 9627–9629.CrossRefGoogle Scholar
  12. [12]
    Shin, D.; Jeong, B.; Mun, B. S.; Jeon, H.; Shin, H.; Baik, J.; Lee, J. On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen-carbon species. J. Phys. Chem. C 2013, 117, 11619–11624.CrossRefGoogle Scholar
  13. [13]
    Jiang, H. L.; Su, Y. H.; Zhu, Y. H.; Shen, J. H.; Yang, X. L.; Feng, Q.; Li, C. Z. Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. J. Mater. Chem. A 2013, 1, 12074–12081.CrossRefGoogle Scholar
  14. [14]
    He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.CrossRefGoogle Scholar
  15. [15]
    Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.CrossRefGoogle Scholar
  16. [16]
    Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.CrossRefGoogle Scholar
  17. [17]
    Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.CrossRefGoogle Scholar
  18. [18]
    Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.CrossRefGoogle Scholar
  19. [19]
    Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon 2015, 89, 41–46.CrossRefGoogle Scholar
  20. [20]
    Zhao, Y.; Hu, C. G.; Song, L.; Wang, L. X.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Functional graphene nanomesh foam. Energy Environ. Sci. 2014, 7, 1913–1918.CrossRefGoogle Scholar
  21. [21]
    Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogendoped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.CrossRefGoogle Scholar
  22. [22]
    Liu, Y. L.; Shi, C. X.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J. Power Sources 2015, 283, 389–396.CrossRefGoogle Scholar
  23. [23]
    Qiu, Y. J.; Yu, J.; Shi, T. N.; Zhou, X. S.; Bai, X. D.; Huang, J. Y. Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J. Power Sources 2011, 196, 9862–9867.CrossRefGoogle Scholar
  24. [24]
    Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.CrossRefGoogle Scholar
  25. [25]
    Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.CrossRefGoogle Scholar
  26. [26]
    Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.CrossRefGoogle Scholar
  27. [27]
    Wang, H. Q.; Zhang, C. F.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 2015, 81, 782–787.CrossRefGoogle Scholar
  28. [28]
    Wang, K. X.; Wang, Y. G.; Wang, Y. R.; Hosono, E.; Zhou, H. S. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 2009, 113, 1093–1097.CrossRefGoogle Scholar
  29. [29]
    Hou, H. L.; Wang, L.; Gao, F. M.; Wei, G. D.; Tang, B.; Yang, W. Y.; Wu, T. General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 2014, 136, 16716–16719.CrossRefGoogle Scholar
  30. [30]
    Lee, K. J.; Min, S. H.; Jang, J. Mesoporous nanofibers from dual structure-directing agents in AAO: Mesostructural control and their catalytic applications. Chem.—Eur. J. 2009, 15, 2491–2495.CrossRefGoogle Scholar
  31. [31]
    An, G. H.; Ahn, H. J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors. Carbon 2013, 65, 87–96.CrossRefGoogle Scholar
  32. [32]
    Wang, S. G.; Cui, Z. T.; Cao, M. H. A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem.—Eur. J. 2015, 21, 2165–2172.CrossRefGoogle Scholar
  33. [33]
    Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.CrossRefGoogle Scholar
  34. [34]
    Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. J. Power Sources 2014, 272, 808–815.CrossRefGoogle Scholar
  35. [35]
    Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.CrossRefGoogle Scholar
  36. [36]
    Chen, L. F.; Huang, Z. H.; Liang, H. W.; Yao, W. T.; Yu, Z. Y.; Yu, S. H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.CrossRefGoogle Scholar
  37. [37]
    Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem., Int. Ed. 2013, 52, 2925–2929.CrossRefGoogle Scholar
  38. [38]
    Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.CrossRefGoogle Scholar
  39. [39]
    Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693–701.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shuguang Wang
    • 1
  • Zhentao Cui
    • 1
  • Jinwen Qin
    • 1
  • Minhua Cao
    • 1
    Email author
  1. 1.Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Department of ChemistryBeijing Institute of TechnologyBeijingChina

Personalised recommendations