Skip to main content
Log in

Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design and simple synthesis of one-dimensional nanofibers with high specific surface areas and hierarchically porous structures are still challenging. In the present work, a novel strategy utilizing a thermally removable template was developed to synthesize hierarchically porous N-doped carbon nanofibers (HP-NCNFs) through the use of simple electrospinning technology coupled with subsequent pyrolysis. During the pyrolysis process, ZnO nanoparticles can be formed in situ and act as a thermally removable template due to their decomposition and sublimation under high-temperature conditions. The resulting HP-NCNFs have lengths of up to hundreds of micrometers with an average diameter of 300 nm and possess a hierarchically porous structure throughout. Such unique structures endow HP-NCNFs with a high specific surface area of up to 829.5 m2·g–1, which is 2.6 times higher than that (323.2 m2·g–1) of conventional N-doped carbon nanofibers (NCNFs). Compared with conventional NCNFs, the HP-NCNF catalyst exhibited greatly enhanced catalytic performance and improved kinetics for the oxygen reduction reaction (ORR) in alkaline media. Moreover, the HP-NCNFs even showed better stability and stronger methanol crossover effect tolerance than the commercial Pt-C catalyst. The optimized ORR performance can be attributed to the synergetic contribution of continuous and three-dimensional (3D) cross-linked structures, graphene-like structure on the edge of the HP-NCNFs, high specific surface area, and a hierarchically porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  2. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

    Article  Google Scholar 

  3. Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    Article  Google Scholar 

  4. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  5. Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H. S.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951.

    Article  Google Scholar 

  6. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  7. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  8. Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

    Article  Google Scholar 

  9. Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.

    Article  Google Scholar 

  10. Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement-induced synthesis of pyridinic- and pyrrolicnitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

    Article  Google Scholar 

  11. Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49, 9627–9629.

    Article  Google Scholar 

  12. Shin, D.; Jeong, B.; Mun, B. S.; Jeon, H.; Shin, H.; Baik, J.; Lee, J. On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen-carbon species. J. Phys. Chem. C 2013, 117, 11619–11624.

    Article  Google Scholar 

  13. Jiang, H. L.; Su, Y. H.; Zhu, Y. H.; Shen, J. H.; Yang, X. L.; Feng, Q.; Li, C. Z. Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. J. Mater. Chem. A 2013, 1, 12074–12081.

    Article  Google Scholar 

  14. He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.

    Article  Google Scholar 

  15. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.

    Article  Google Scholar 

  16. Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

    Article  Google Scholar 

  17. Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

    Article  Google Scholar 

  18. Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

    Article  Google Scholar 

  19. Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon 2015, 89, 41–46.

    Article  Google Scholar 

  20. Zhao, Y.; Hu, C. G.; Song, L.; Wang, L. X.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Functional graphene nanomesh foam. Energy Environ. Sci. 2014, 7, 1913–1918.

    Article  Google Scholar 

  21. Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogendoped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Article  Google Scholar 

  22. Liu, Y. L.; Shi, C. X.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J. Power Sources 2015, 283, 389–396.

    Article  Google Scholar 

  23. Qiu, Y. J.; Yu, J.; Shi, T. N.; Zhou, X. S.; Bai, X. D.; Huang, J. Y. Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J. Power Sources 2011, 196, 9862–9867.

    Article  Google Scholar 

  24. Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

    Article  Google Scholar 

  25. Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.

    Article  Google Scholar 

  26. Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  27. Wang, H. Q.; Zhang, C. F.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 2015, 81, 782–787.

    Article  Google Scholar 

  28. Wang, K. X.; Wang, Y. G.; Wang, Y. R.; Hosono, E.; Zhou, H. S. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 2009, 113, 1093–1097.

    Article  Google Scholar 

  29. Hou, H. L.; Wang, L.; Gao, F. M.; Wei, G. D.; Tang, B.; Yang, W. Y.; Wu, T. General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 2014, 136, 16716–16719.

    Article  Google Scholar 

  30. Lee, K. J.; Min, S. H.; Jang, J. Mesoporous nanofibers from dual structure-directing agents in AAO: Mesostructural control and their catalytic applications. Chem.—Eur. J. 2009, 15, 2491–2495.

    Article  Google Scholar 

  31. An, G. H.; Ahn, H. J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors. Carbon 2013, 65, 87–96.

    Article  Google Scholar 

  32. Wang, S. G.; Cui, Z. T.; Cao, M. H. A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem.—Eur. J. 2015, 21, 2165–2172.

    Article  Google Scholar 

  33. Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

    Article  Google Scholar 

  34. Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. J. Power Sources 2014, 272, 808–815.

    Article  Google Scholar 

  35. Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.

    Article  Google Scholar 

  36. Chen, L. F.; Huang, Z. H.; Liang, H. W.; Yao, W. T.; Yu, Z. Y.; Yu, S. H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

    Article  Google Scholar 

  37. Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem., Int. Ed. 2013, 52, 2925–2929.

    Article  Google Scholar 

  38. Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  Google Scholar 

  39. Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693–701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cui, Z., Qin, J. et al. Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis. Nano Res. 9, 2270–2283 (2016). https://doi.org/10.1007/s12274-016-1114-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1114-x

Keywords

Navigation