Nano Research

, Volume 9, Issue 8, pp 2260–2269 | Cite as

Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection

  • Shichao Du
  • Zhiyu RenEmail author
  • Jun Wu
  • Wang Xi
  • Honggang FuEmail author
Research Article


Highly sensitive, selective, and stable hydrogen peroxide (H2O2) detection using nanozyme-based catalysts are desirable for practical applications. Herein, vertical α-FeOOH nanowires were successfully grown on the surface of carbon fiber paper (CFP) via a low-temperature hydrothermal procedure. The formation of vertical α-FeOOH nanowires is ascribed to the structure-directing role of sodium dodecyl sulfate. The resulting free-standing electrode with one-dimensional (1D) nanowires offers oriented channels for fast charge transfer, excellent electrical contact between the electrocatalyst and the current collector, and good mechanical stability and reproducibility. Thus, it can serve as an efficient electrocatalyst for the reduction and sensitive detection of H2O2. The relation of the oxidation current of H2O2 with the concentration is linear from 0.05 to 0.5 mM with a sensitivity of −0.194 mA/(mM·cm2) and a low detection limit of 18 μM. Furthermore, the portability in the geometric tailor and easy device fabrication allow extending the general applicability of this free-standing electrode to chemical and biological sensors.


α-FeOOH nanowires free-standing electrode synergistic effect electrocatalysis H2O2 detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1113_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1507 KB.


  1. [1]
    Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432.CrossRefGoogle Scholar
  2. [2]
    Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.CrossRefGoogle Scholar
  3. [3]
    Kim, M. I.; Ye, Y.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875.CrossRefGoogle Scholar
  4. [4]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.CrossRefGoogle Scholar
  5. [5]
    Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.CrossRefGoogle Scholar
  6. [6]
    Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.CrossRefGoogle Scholar
  7. [7]
    Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.CrossRefGoogle Scholar
  8. [8]
    Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009, 2, 210–219.CrossRefGoogle Scholar
  9. [9]
    Rhee, S. G.; Chang, T. S.; Jeong, W. J.; Kang, D.; Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 2010, 29, 539–549.CrossRefGoogle Scholar
  10. [10]
    Wei, D.; Bailey, M. J. A.; Andrew, P.; Ryhänen, T. Electrochemical biosensors at the nanoscale. Lab Chip. 2009, 9, 2123–2131.CrossRefGoogle Scholar
  11. [11]
    Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.CrossRefGoogle Scholar
  12. [12]
    Yagati, A. K.; Choi, J. W. Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics. Electroanalysis 2014, 26, 1259–1276.CrossRefGoogle Scholar
  13. [13]
    Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518–526.CrossRefGoogle Scholar
  14. [14]
    Chen, S. H.; Yuan, R.; Chai, Y. Q.; Hu, F. X. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32.CrossRefGoogle Scholar
  15. [15]
    Chen, A. C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438.CrossRefGoogle Scholar
  16. [16]
    Wang, J.; Chen, X. J.; Liao, K. M.; Wang, G. H.; Han, M. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Res. Lett. 2015, 10, 311.CrossRefGoogle Scholar
  17. [17]
    Aiyar, J.; Berkovits, H. J.; Floyd, R. A.; Wetterhahn, K. E. Reaction of chromium(VI) with hydrogen peroxide in the presence of glutathione: Reactive intermediates and resulting DNA damage. Chem. Res. Toxicol. 1990, 3, 595–603.CrossRefGoogle Scholar
  18. [18]
    Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41, 2849–2866.CrossRefGoogle Scholar
  19. [19]
    Manea, F.; Houillon, F. B.; Pasquato. L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.CrossRefGoogle Scholar
  20. [20]
    Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.CrossRefGoogle Scholar
  21. [21]
    Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetallic nanoparticle tubes. ACS Nano 2011, 5, 4211–4218.CrossRefGoogle Scholar
  22. [22]
    Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H. Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012, 12, 4859–4863.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Zhang, W.; Zhang, H. L.; Yang, Z. Y.; Li, T. R.; Wang, B. D.; Huo, X.; Wang, R.; Chen, H. T. A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013, 49, 4938–4940.CrossRefGoogle Scholar
  24. [24]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  25. [25]
    Shi, Y.; Su, P.; Wang, Y. Y.; Yang, Y. Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 2014, 130, 259–264.CrossRefGoogle Scholar
  26. [26]
    Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.CrossRefGoogle Scholar
  27. [27]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  28. [28]
    Zhang, C. M.; Zhu, J. X; Rui, X. H.; Chen, J.; Sim, D.; Shi, W. H.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm 2012, 14, 147–153.CrossRefGoogle Scholar
  29. [29]
    Perez, J. M. Iron oxide nanoparticles: Hidden talent. Nat. Nanotechnol. 2007, 2, 535–536.CrossRefGoogle Scholar
  30. [30]
    Chen, P. Z.; Xu, K.; Li, X. L.; Guo, Y. Q.; Zhou, D.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z; Xie, Y. Ultrathin nanosheets of feroxyhyte: A new two-dimensional material with robust ferromagnetic behavior. Chem. Sci. 2014, 5, 2251–2255.CrossRefGoogle Scholar
  31. [31]
    Yang, T. Y.; Kang, H. Y.; Jin, K.; Park, S.; Lee, J.; Sim, U.; Jeong, H. Y.; Joo, Y. C.; Nam, K. T. An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation. J. Mater. Chem. A 2014, 2, 2297–2305.CrossRefGoogle Scholar
  32. [32]
    Zhang, J.; Gao, W. B.; Dou, M. L.; Wang, F.; Liu, J. Q.; Li, Z. L.; Ji, J. Nanorod–constructed porous Co3O4 nanowires: Highly sensitive sensors for the detection of hydrazine. Analyst 2015, 140, 1686–1692.CrossRefGoogle Scholar
  33. [33]
    Xie, J. L.; Guo, C. X.; Li, C. M. Construction of onedimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.CrossRefGoogle Scholar
  34. [34]
    Wang, L.; Su, L.; Chen, H. H.; Yin, T.; Lin, Z. Y.; Lin, X. X.; Yuan, C. W.; Fu, D. G. Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer. Mater. Lett. 2015, 141, 311–314.CrossRefGoogle Scholar
  35. [35]
    Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.CrossRefGoogle Scholar
  36. [36]
    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.CrossRefGoogle Scholar
  37. [37]
    Valentini, F.; Cristofanelli, L.; Carbone M.; Palleschi, G. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2–detection. Electrochimi. Acta 2012, 63, 37–46.CrossRefGoogle Scholar
  38. [38]
    Zhang, L. H.; Zhai, Y. M.; Gao, N.; Wen, D.; Dong, S. J. Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem. Commun. 2008, 10, 1524–1526.CrossRefGoogle Scholar
  39. [39]
    Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.CrossRefGoogle Scholar
  40. [40]
    Li, S. S.; Cong, H.-P.; Wang, P.; Yu, S. H. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity. Nanoscale 2014, 6, 7534–7541.CrossRefGoogle Scholar
  41. [41]
    Liu, M. M.; He, S. J.; Chen, W. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale 2014, 6, 11769–11776.CrossRefGoogle Scholar
  42. [42]
    Louie, W. M.; Bell, A. T. An Investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  43. [43]
    Froment, F.; Tourné, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568.CrossRefGoogle Scholar
  44. [44]
    Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.CrossRefGoogle Scholar
  45. [45]
    Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Adv. Funct. Mater. 2013, 23, 3513–3518.CrossRefGoogle Scholar
  46. [46]
    Kannan, P.; Maiyalagan, T.; Marsili, E.; Ghosh, S.; Niedziolka-Jönsson, J.; Jönsson-Niedziolka, M. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. Nanoscale 2016, 8, 843–855.CrossRefGoogle Scholar
  47. [47]
    Lin, C. Y.; Chang, C. T. Iron oxide nanorods array in electrochemical detection of H2O2. Sens. Actuators B 2015, 220, 695–704.CrossRefGoogle Scholar
  48. [48]
    Hrbac, J.; Halouzka, V.; Zboril, R.; Papadopoulos, K.; Triantis, T. Carbon electrodes modified by nanoscopic iron(III) oxides to assemble chemical sensors for the hydrogen peroxide amperometric detection. Electroanalysis 2007, 19, 1850–1854.CrossRefGoogle Scholar
  49. [49]
    Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Peroxidase-like activity and amperometric sensing of hydrogen peroxide by Fe2O3 and Prussian Blue-modified Fe2O3 nanoparticles. J. Mol. Catal. A: Chem. 2012, 360, 71–77.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Theoretical chemistryJilin UniversityChangChunChina
  2. 2.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina

Personalised recommendations