Nano Research

, Volume 9, Issue 8, pp 2244–2250 | Cite as

Free-standing palladium-nickel alloy wavy nanosheets

  • Weng-Chon Cheong
  • Chuhao Liu
  • Menglei Jiang
  • Haohong Duan
  • Dingsheng Wang
  • Chen ChenEmail author
  • Yadong LiEmail author
Research Article


Two-dimensional nanomaterials (2DNMs) have attracted increasing attention due to their unique properties and promising applications. Unlike 2DNMs with lamellar structures, metal ultrathin 2DNMs are difficult to synthesize and stabilize because they tend to form close-packed crystal structures. Most reported cases consist of monometallic and heterogeneous nanostructures. The synthesis of metal alloy 2DNMs has been rarely reported. Here, we report the synthesis of PdNi alloy wavy nanosheets (WNSs) using an enhanced CO-confinement strategy. This strategy is also suitable to the synthesis of other Pd-based alloy WNSs such as PdCu, PdFe, and even a trimetallic PdFeNi.


Pd Ni alloy nanosheets carbon monoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1111_MOESM1_ESM.pdf (5 mb)
Supplementary material, approximately 5101 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  4. [4]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  5. [5]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Stano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  6. [6]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  7. [7]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  8. [8]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  9. [9]
    He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.CrossRefGoogle Scholar
  10. [10]
    Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.CrossRefGoogle Scholar
  11. [11]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.CrossRefGoogle Scholar
  12. [12]
    Liu, Q.; Sun, C. Y.; He, Q.; Khalil, A.; Xiang, T.; Liu, D. B.; Zhou, Y.; Wang, J.; Song, L. Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Res. 2015, 8, 3982–3991.CrossRefGoogle Scholar
  13. [13]
    Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  14. [14]
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar
  15. [15]
    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.CrossRefGoogle Scholar
  16. [16]
    Huang, X.; Zhang, H. Molecular crystals on two-dimensional van der Waals substrates. Sci. China Mater. 2015, 58, 5–8.CrossRefGoogle Scholar
  17. [17]
    Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.CrossRefGoogle Scholar
  18. [18]
    Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.CrossRefGoogle Scholar
  19. [19]
    Yin, A. X.; Liu, W. C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.CrossRefGoogle Scholar
  20. [20]
    Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.Google Scholar
  21. [21]
    Zhao, L.; Xu, C. F.; Su, H. F.; Liang, J. H.; Lin, S. C.; Gu, L.; Wang, X. L.; Chen, M.; Zheng, N. F. Single-crystalline rhodium nanosheets with atomic thickness. Adv. Sci. 2015, 2, 1500100.CrossRefGoogle Scholar
  22. [22]
    Li, H.; Chen, G. X.; Yang, H. Y.; Wang, X. L.; Liang, J. H.; Liu, P. X.; Chen, M.; Zheng, N. F. Shape-controlled synthesis of surface-clean ultrathin palladium nanosheets by simply mixing a dinuclear PdI carbonyl chloride complex with H2O. Angew. Chem., Int. Ed. 2013, 52, 8368–8372.CrossRefGoogle Scholar
  23. [23]
    Funatsu, A.; Tateishi, H.; Hatakeyama, K.; Fukunaga, Y.; Taniguchi, T.; Koinuma, M.; Matsuura, H.; Matsumoto, Y. Synthesis of monolayer platinum nanosheets. Chem. Commun. 2014, 50, 8503–8506.CrossRefGoogle Scholar
  24. [24]
    Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.CrossRefGoogle Scholar
  25. [25]
    Huang, X.; Li, H.; Li, S. Z.; Wu, S. X.; Boey, F.; Ma, J.; Zhang, H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angew. Chem., Int. Ed. 2011, 50, 12245–12248.CrossRefGoogle Scholar
  26. [26]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.CrossRefGoogle Scholar
  27. [27]
    Wang, X. L.; Wu, B. H.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Dai, Y.; Zheng, N. F. A hydride-induced-reduction strategy for fabricating palladium-based core–shell bimetallic nanocrystals. Nanoscale 2014, 6, 6798–6804.CrossRefGoogle Scholar
  28. [28]
    Chen, M.; Tang, S. H.; Guo, Z. D.; Wang, X. Y.; Mo, S. G.; Huang, X. Q.; Liu, G.; Zheng, N. F. Core–shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater. 2014, 26, 8210–8216.CrossRefGoogle Scholar
  29. [29]
    Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.CrossRefGoogle Scholar
  30. [30]
    Fan, Z. X.; Zhu, Y. H.; Huang, X.; Han, Y.; Wang, Q. X.; Liu, Q.; Huang, Y.; Gan, C. L.; Zhang, H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core–shell nanoplates from hexagonal-close-packed Au square sheets. Angew. Chem., Int. Ed. 2015, 54, 5672–5676.CrossRefGoogle Scholar
  31. [31]
    Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.CrossRefGoogle Scholar
  32. [32]
    Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt–Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.CrossRefGoogle Scholar
  33. [33]
    Hu, C. Y.; Mu, X. L.; Fan, J. M.; Ma, H. B.; Zhao, X. J.; Chen, G. X.; Zhou, Z. Y.; Zheng, N. F. Interfacial effects in PdAg bimetallic nanosheets for selective dehydrogenation of formic acid. ChemNanoMat 2016, 2, 28–32.CrossRefGoogle Scholar
  34. [34]
    Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S.-U.; Lee, Y. W.; Choi, W.-I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.CrossRefGoogle Scholar
  35. [35]
    Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.CrossRefGoogle Scholar
  36. [36]
    Kang, Y. J.; Ye, X. C.; Murray, C. B. Size- and shapeselective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem., Int. Ed. 2010, 49, 6156–6159.CrossRefGoogle Scholar
  37. [37]
    Wu, B. H.; Zheng, N. F.; Fu, G. Small molecules control the formation of Pt nanocrystals: A key role of carbon monoxide in the synthesis of Pt nanocubes. Chem. Commun. 2011, 47, 1039–1041.CrossRefGoogle Scholar
  38. [38]
    Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.CrossRefGoogle Scholar
  39. [39]
    Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.CrossRefGoogle Scholar
  40. [40]
    Qian, H. M.; Xu, M.; Li, X. W.; Ji, M. W.; Cheng, L.; Shoaib, A.; Liu, J. J.; Jiang, L.; Zhu, H. S.; Zhang, J. T. Surface micro/nanostructure evolution of Au–Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res. 2016, 9, 876–885.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Weng-Chon Cheong
    • 1
  • Chuhao Liu
    • 1
  • Menglei Jiang
    • 1
  • Haohong Duan
    • 1
  • Dingsheng Wang
    • 1
  • Chen Chen
    • 1
    Email author
  • Yadong Li
    • 1
    Email author
  1. 1.Department of Chemistry and Collaborative Innovation Center for Nanomaterials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations