Advertisement

Nano Research

, Volume 9, Issue 8, pp 2226–2233 | Cite as

Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy

  • Ting Quan
  • Ya YangEmail author
Research Article

Abstract

We propose a fully enclosed hybrid nanogenerator consisting of five electromagnetic generators (EMGs) and four triboelectric nanogenerators (TENGs). Under a vibration frequency of 15.5 Hz, one TENG can deliver a high output voltage of approximately 24 V and a low output current of approximately 24 μA, whereas one EMG can deliver a low output voltage of approximately 0.8 V and a high output current of approximately 0.5 mA. By integrating five rectified EMGs in series and four rectified TENGs in parallel, the hybrid nanogenerator can be used to charge a home-made Li-ion battery from 1 to 1.9 V in 6.3 h. By using the hybrid nanogenerator to scavenge the vibrational energy produced by human hands, a temperature–humidity sensor can be sustainably powered by the nanogenerator, which is capable of charging the 200 μF system power capacitor from 0 to 2 V in 15 s, and sustainably power the sensor in 29 s.

Keywords

hybrid nanogenerator electromagnetic triboelectric vibration energy Li-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1109_MOESM1_ESM.avi (4.4 mb)
Supplementary material, approximately 4479 KB.

References

  1. [1]
    Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.CrossRefGoogle Scholar
  2. [2]
    Collins, S. H.; Wiggin, M. B.; Sawicki, G. S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015, 522, 212–215.CrossRefGoogle Scholar
  3. [3]
    Kuo, A. D. Harvesting energy by improving the economy of human walking. Science 2005, 309, 1686–1687.CrossRefGoogle Scholar
  4. [4]
    Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728.CrossRefGoogle Scholar
  5. [5]
    Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.CrossRefGoogle Scholar
  6. [6]
    Jung, W.-S.; Lee, M.-J.; Kang, M.-G.; Moon, H. G.; Yoon, S.-J.; Baek, S.-H.; Kang, C.-Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181.CrossRefGoogle Scholar
  7. [7]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  8. [8]
    Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.CrossRefGoogle Scholar
  9. [9]
    Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.CrossRefGoogle Scholar
  10. [10]
    Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.CrossRefGoogle Scholar
  11. [11]
    Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604–608.CrossRefGoogle Scholar
  12. [12]
    Yang, Y.; Zhang, H. L.; Liu, R. Y.; Wen, X. N.; Hou, T.-C.; Wang, Z. L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 2013, 3, 1563–1568.CrossRefGoogle Scholar
  13. [13]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciences; National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations