Nano Research

, Volume 9, Issue 7, pp 2190–2201 | Cite as

Pulmonary administration of functionalized nanoparticles significantly reduces beta-amyloid in the brain of an Alzheimer’s disease murine model

  • Giulio Sancini
  • Roberta Dal MagroEmail author
  • Francesca Ornaghi
  • Claudia Balducci
  • Gianluigi Forloni
  • Marco Gobbi
  • Mario Salmona
  • Francesca Re
Research Article


Treatment options for Alzheimer’s disease (AD) are limited because of the inability of drugs to cross the blood–brain barrier (BBB). A promising strategy to overcome this obstacle is the use of nanoparticles (NPs). Previously, we showed that intraperitoneal administration of liposomes functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) reduces brain beta-amyloid (Aβ) burden and ameliorates impaired memory in AD mice. Here, we investigated lung administration as an alternative, non-invasive NP delivery route for reaching the brain. Our results show that mApoE-PA-LIP were able to cross the pulmonary epithelium ([14C]-PA permeability = 6.5 ± 2.0 × 10–6 cm/min) in vitro and reach the brain (up to 0.6 μg PA/g brain) following in vivo intratracheal instillations. Lung administration of mApoE-PA-LIP to AD mice significantly decreased total brain Aβ (–60%; p < 0.05) compared to untreated mice. These results suggest that pulmonary administration could be exploited for brain delivery of NPs designed for AD therapy.


ApoE-derived peptide lung administration nanoparticles Alzheimer’s disease liposomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Neuwelt, E. A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O’Donnell, M.; Povlishock, J. T. et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci. 2011, 12, 169–182.CrossRefGoogle Scholar
  2. [2]
    Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W. et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: Implications for therapy of Alzheimer disease. Nanomedicine 2014, 10, 1583–1590.Google Scholar
  3. [3]
    Balducci, C.; Mancini, S.; Minniti, S.; La Vitola, P.; Zotti, M.; Sancini, G.; Mauri, M.; Cagnotto, A.; Colombo, L.; Fiordaliso, F. et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J. Neurosci. 2014, 34, 14022–14031.CrossRefGoogle Scholar
  4. [4]
    Mancini, S.; Minniti, S.; Gregori, M.; Sancini, G.; Cagnotto, A.; Couraud, P. O.; Ordóñez-Gutiérrez, L.; Wandosell, F.; Salmona, M.; Re, F. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease. Nanomedicine 2016, 12, 43–52.Google Scholar
  5. [5]
    Born, J.; Lange, T.; Kern, W.; McGregor, G. P.; Bickel, U.; Fehm, H. L. Sniffing neuropeptides: Atransnasal approach to the human brain. Nat. Neurosci. 2002, 5, 514–516.CrossRefGoogle Scholar
  6. [6]
    Hanson, L. R.; Frey, W. H., II. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008, 9, S5.CrossRefGoogle Scholar
  7. [7]
    Minn, A.; Leclerc, S.; Heydel, J. M.; Minn, A. L.; Denizcot, C.; Cattarelli, M.; Netter, P.; Gradinaru, D. Drug transport into the mammalian brain: The nasal pathway and its specific metabolic barrier. J. Drug Target. 2002, 10, 285–296.CrossRefGoogle Scholar
  8. [8]
    Masserini, M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013, 2013, Article ID 238428.Google Scholar
  9. [9]
    Labiris, N. R.; Dolovich, M. B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612.CrossRefGoogle Scholar
  10. [10]
    Hara, K.; Tsujimoto, H.; Tsukada, Y.; Huang, C. C.; Kawashima, Y.; Tsutsumi, M. Histological examination of PLGA nanospheres for intratracheal drug administration. Int. J. Pharm. 2008, 356, 267–273.CrossRefGoogle Scholar
  11. [11]
    Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm. 2015, 95, 117–127.CrossRefGoogle Scholar
  12. [12]
    Nemmar, A.; Vanbilloen, H.; Hoylaerts, M. F.; Hoet, P. H.; Verbruggen, A.; Nemery, B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care Med. 2001, 164, 1665–1668.CrossRefGoogle Scholar
  13. [13]
    Kreyling, W. G.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 2002, 65, 1513–1530.CrossRefGoogle Scholar
  14. [14]
    Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 2002, 65, 1531–1543.CrossRefGoogle Scholar
  15. [15]
    He, X.; Zhang, H. F.; Ma, Y. H.; Bai, W.; Zhang, Z. Y.; Lu, K.; Ding, Y. Y.; Zhao, Y. L.; Chai, Z. F.Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 2010, 21, 285103.CrossRefGoogle Scholar
  16. [16]
    Konduru, N. V.; Murdaugh, K. M.; Sotiriou, G. A.; Donaghey, T. C.; Demokritou, P.; Brain, J. D.; Molina, R. M. Bioavailability, distribution and clearance of tracheallyinstilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part. FibreToxicol. 2014, 11, 44.Google Scholar
  17. [17]
    Videira, M. A.; Gano, L.; Santos, C.; Neves, M.; Almeida, A. J. Lymphatic uptake of lipid nanoparticles following endotracheal administration. J. Microencapsul. 2006, 23, 855–862.CrossRefGoogle Scholar
  18. [18]
    Videira, M. A.; Botelho, M. F.; Santos, A. C.; Gouveia, L. F.; Pedrosode Lima, J. J.; Almeida, A. J. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target. 2002, 10, 607–613.CrossRefGoogle Scholar
  19. [19]
    Hermanns, M. I.; Unger, R. E.; Kehe, K.; Peters, K.; Kirkpatrick, C. J. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: Development of an alveolo-capillary barrier in vitro. Lab. Invest. 2004, 84, 736–752.CrossRefGoogle Scholar
  20. [20]
    Cecchelli, R.; Dehouck, B.; Descamps, L.; Fenart, L.; Buée-Scherrer, V. V.; Duhem, C.; Lundquist, S.; Rentfel, M.; Torpier, G.; Dehouck, M. P. In vitro model for evaluating drug transport across the blood-brain barrier. Adv. Drug Deliv. Rev. 1999, 36, 165–178.CrossRefGoogle Scholar
  21. [21]
    Re, F.; Cambianica, I.; Zona, C.; Sesana, S.; Gregori, M.; Rigolio, R.; La Ferla, B.; Nicotra, F.; Forloni, G.; Cagnotto, A. et al. Functionalization of liposomes with ApoE-derived peptides at different densityaffects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 2011, 7, 551–559.Google Scholar
  22. [22]
    Wan, L.; Pooyan, S.; Hu, P. D.; Leibowitz, M. J.; Stein, S.; Sinko, P. J. Peritoneal macrophage uptake, pharmacokinetics and biodistribution of macrophage-targeted PEG-fMLF (Nformyl-methionyl-leucyl-phenylalanine) nanocarriers for improving HIV drug delivery. Pharm. Res. 2007, 24, 2110–2119.CrossRefGoogle Scholar
  23. [23]
    Mantecca, P.; Sancini, G.; Moschini, E.; Farina, F.; Gualtieri, M.; Rohr, A.; Miserocchi, G.; Palestini, P.; Camatini, M. Lung toxicity induced by intratracheal instillation of sizefractionated tire particles. Toxicol. Lett. 2009, 189, 206–214.CrossRefGoogle Scholar
  24. [24]
    Re, F.; Cambianica, I.; Sesana, S.; Salvati, E.; Cagnotto, A.; Salmona, M.; Couraud, P. O.; Moghimi, S. M.; Masserini, M.; Sancini, G. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. J. Biotechnol. 2011, 156, 341–346.CrossRefGoogle Scholar
  25. [25]
    Eltoukhy, A. A.; Sahay, G.; Cunningham, J. M.; Anderson, D. G. Niemann-Pick C1 affects the gene delivery efficacy of degradable polymeric nanoparticles. ACS Nano 2014, 8, 7905–7913.CrossRefGoogle Scholar
  26. [26]
    Sahay, G.; Querbes, W.; Alabi, C.; Eltoukhy, A.; Sarkar, S.; Zurenko, C.; Karagiannis, E.; Love, K.; Chen, D. L.; Zoncu, R. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 2013, 31, 653–658.CrossRefGoogle Scholar
  27. [27]
    Roszell, B. R.; Tao, J. Q.; Yu, K. J.; Huang, S. H.; Bates, S. R. Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L919–L932.CrossRefGoogle Scholar
  28. [28]
    Klein, S. G.; Serchi, T.; Hoffmann, L.; Blömeke, B.; Gutleb, A. C. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part. Fibre Toxicol. 2013, 10, 31.CrossRefGoogle Scholar
  29. [29]
    Sancini, G.; Farina, F.; Battaglia, C.; Cifola, I.; Mangano, E.; Mantecca, P.; Camatini, M.; Palestini, P. Health risk assessment for air pollutants: Alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2. 5). PLoS One. 2014, 9, e109685.CrossRefGoogle Scholar
  30. [30]
    Farina, F.; Sancini, G.; Longhin, E.; Mantecca, P.; Camatini, M.; Palestini, P. Milan PM1 induces adverse effects on mice lungs and cardiovascular system. BioMedRes. Int. 2013, 2013, Article ID 583513.Google Scholar
  31. [31]
    Farina, F.; Sancini, G.; Mantecca, P.; Gallinotti, D.; Camatini, M.; Palestini, P. The acute toxic effects of particulate matter in mouse lung are related to size and season of collection. Toxicol. Lett. 2011, 202, 209–217.CrossRefGoogle Scholar
  32. [32]
    Choi, H. S.; Ashitate, Y.; Lee, J. H.; Kim, S. H.; Matsui, A.; Insin, N.; Bawendi, M. G.; Semmler-Behnke, M.; Frangioni, J. V.; Tsuda, A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 2010, 28, 1300–1303.CrossRefGoogle Scholar
  33. [33]
    Driscoll, K. E.; Costa, D. L.; Hatch, G.; Henderson, R.; Oberdorster, G.; Salem, H.; Schlesinger, R. B. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol. Sci. 2000, 55, 24–35.CrossRefGoogle Scholar
  34. [34]
    Kreyling, W. G.; Hirn, S.; Möller, W.; Schleh, C.; Wenk, A.; Celik, G.; Lipka, J.; Schäffler, M.; Haberl, N.; Johnston, B. al. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 2014, 8, 222–233.CrossRefGoogle Scholar
  35. [35]
    Sabaitis, C. P.; Leong, B. K.; Rop, D. A.; Aaron, C. S. Validation of intratracheal instillation as an alternative for aerosol inhalation toxicity testing. J. Appl. Toxicol. 1999, 19, 133–140.CrossRefGoogle Scholar
  36. [36]
    O’Callaghan, C.; Barry, P. W. The science of nebulised drug delivery. Thorax 1997, 52, S31–S44.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giulio Sancini
    • 1
  • Roberta Dal Magro
    • 1
    Email author
  • Francesca Ornaghi
    • 1
  • Claudia Balducci
    • 2
  • Gianluigi Forloni
    • 2
  • Marco Gobbi
    • 3
  • Mario Salmona
    • 3
  • Francesca Re
    • 1
  1. 1.Nanomedicine Center, School of Medicine and SurgeryUniversity of Milano-BicoccaMonza (MB)Italy
  2. 2.Department of NeuroscienceIRCCS-Istituto di Ricerche Farmacologiche Mario NegriMilanoItaly
  3. 3.Department of Biochemistry and Molecular PharmacologyIRCCS-Istituto di Ricerche Farmacologiche Mario NegriMilanoItaly

Personalised recommendations