Skip to main content

Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces

Abstract

Single-crystal graphene domains grown by chemical vapor deposition (CVD) intrinsically tend to have a six-fold symmetry; however, several factors can influence the growth kinetics, which can in turn lead to the formation of graphene with different shapes. Here we report the growth of oriented large-area pentagonal single-crystal graphene domains on Cu foils by CVD. We found that high-index Cu planes contributed selectively to the formation of pentagonal graphene. Our results indicated that lattice steps present on the crystalline surface of the underlying Cu promoted graphene growth in the direction perpendicular to the steps and finally led to the disappearance of one of the edges forming a pentagon. In addition, hydrogen promoted the formation of pentagonal domains. This work provides new insights into the mechanism of graphene growth.

This is a preview of subscription content, access via your institution.

References

  1. Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  2. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  Google Scholar 

  3. Yin, Z. Y.; Zhu, J. X.; He, Q. Y.; Cao, X. H.; Tan, C. L.; Chen, H. Y.; Yan, Q. Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

    Google Scholar 

  4. Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498.

    Article  Google Scholar 

  5. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  6. Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

    Article  Google Scholar 

  7. Zhang, W. L.; Xie, H. H.; Zhang, R. F.; Jian, M. Q.; Wang, C. Y.; Zheng, Q. S.; Wei, F.; Zhang, Y. Y. Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 2015, 86, 358–362.

    Article  Google Scholar 

  8. Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.

    Article  Google Scholar 

  9. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

    Article  Google Scholar 

  10. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  Google Scholar 

  11. Luo, Z. T.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. Acs Nano 2011, 5, 9154–9160.

    Article  Google Scholar 

  12. Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. Acs Nano 2012, 6, 9110–9117.

    Article  Google Scholar 

  13. Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810–2816.

    Article  Google Scholar 

  14. Wu, Y. A.; Robertson, A. W.; Schäffel, F.; Speller, S. C.; Warner, J. H. Aligned rectangular few-layer graphene domains on copper surfaces. Chem. Mater. 2011, 23, 4543–4547.

    Article  Google Scholar 

  15. Liu, J. W.; Wu, J.; Edwards, C. M.; Berrie, C. L.; Moore, D.; Chen, Z. J.; Maroni, V. A.; Paranthaman, M. P.; Goyal, A. Triangular graphene grain growth on cube-textured Cu substrates. Adv. Funct. Mater. 2011, 21, 3868–3874.

    Article  Google Scholar 

  16. Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

    Article  Google Scholar 

  17. Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890–4896.

    Article  Google Scholar 

  18. Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

    Article  Google Scholar 

  19. Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.

    Article  Google Scholar 

  20. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

    Article  Google Scholar 

  21. Yan, Z.; Liu, Y. Y.; Lin, J.; Peng, Z. W.; Wang, G.; Pembroke, E.; Zhou, H. Q.; Xiang, C. S.; Raji, A. R. O.; Samuel, E. L. G. et al. Hexagonal graphene onion rings. J. Am. Chem. Soc. 2013, 135, 10755–10762.

    Article  Google Scholar 

  22. Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.

    Article  Google Scholar 

  23. Jung, D. H.; Kang, C.; Yoon, D.; Cheong, H.; Lee, J. S. Anisotropic behavior of hydrogen in the formation of pentagonal graphene domains. Carbon 2015, 89, 242–248.

    Article  Google Scholar 

  24. Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

    Article  Google Scholar 

  25. Han, G. H.; Güneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H.-J.; Choi, J.-Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.

    Article  Google Scholar 

  26. Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

    Article  Google Scholar 

  27. Yuan, Q. H.; Yakobson, B. I.; Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 2014, 5, 3093–3099.

    Article  Google Scholar 

  28. Hayashi, K.; Sato, S.; Yokoyama, N. Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface. Nanotechnology 2013, 24, 025603.

    Article  Google Scholar 

  29. Yan, Z.; Liu, Y. Y.; Ju, L.; Peng, Z. W.; Lin, J.; Wang, G.; Zhou, H. Q.; Xiang, C. S.; Samuel, E. L. G.; Kittrell, C. et al. Large hexagonal Bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem., Int. Ed. 2014, 53, 1565–1569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Artyukhov, V.I., Sun, L. et al. Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Res. 9, 2182–2189 (2016). https://doi.org/10.1007/s12274-016-1107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1107-9

Keywords

  • pentagonal graphene
  • copper foil
  • high index plane
  • chemical vapor deposition
  • large area