Advertisement

Nano Research

, Volume 9, Issue 7, pp 2182–2189 | Cite as

Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces

  • Kailun Xia
  • Vasilii I. Artyukhov
  • Lifei Sun
  • Jingying Zheng
  • Liying Jiao
  • Boris I. Yakobson
  • Yingying ZhangEmail author
Research Article

Abstract

Single-crystal graphene domains grown by chemical vapor deposition (CVD) intrinsically tend to have a six-fold symmetry; however, several factors can influence the growth kinetics, which can in turn lead to the formation of graphene with different shapes. Here we report the growth of oriented large-area pentagonal single-crystal graphene domains on Cu foils by CVD. We found that high-index Cu planes contributed selectively to the formation of pentagonal graphene. Our results indicated that lattice steps present on the crystalline surface of the underlying Cu promoted graphene growth in the direction perpendicular to the steps and finally led to the disappearance of one of the edges forming a pentagon. In addition, hydrogen promoted the formation of pentagonal domains. This work provides new insights into the mechanism of graphene growth.

Keywords

pentagonal graphene copper foil high index plane chemical vapor deposition large area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1107_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1259 KB.

References

  1. [1]
    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  2. [2]
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  3. [3]
    Yin, Z. Y.; Zhu, J. X.; He, Q. Y.; Cao, X. H.; Tan, C. L.; Chen, H. Y.; Yan, Q. Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.Google Scholar
  4. [4]
    Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498.CrossRefGoogle Scholar
  5. [5]
    Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.CrossRefGoogle Scholar
  6. [6]
    Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.CrossRefGoogle Scholar
  7. [7]
    Zhang, W. L.; Xie, H. H.; Zhang, R. F.; Jian, M. Q.; Wang, C. Y.; Zheng, Q. S.; Wei, F.; Zhang, Y. Y. Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 2015, 86, 358–362.CrossRefGoogle Scholar
  8. [8]
    Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.CrossRefGoogle Scholar
  9. [9]
    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.CrossRefGoogle Scholar
  10. [10]
    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  11. [11]
    Luo, Z. T.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. Acs Nano 2011, 5, 9154–9160.CrossRefGoogle Scholar
  12. [12]
    Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. Acs Nano 2012, 6, 9110–9117.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810–2816.CrossRefGoogle Scholar
  14. [14]
    Wu, Y. A.; Robertson, A. W.; Schäffel, F.; Speller, S. C.; Warner, J. H. Aligned rectangular few-layer graphene domains on copper surfaces. Chem. Mater. 2011, 23, 4543–4547.CrossRefGoogle Scholar
  15. [15]
    Liu, J. W.; Wu, J.; Edwards, C. M.; Berrie, C. L.; Moore, D.; Chen, Z. J.; Maroni, V. A.; Paranthaman, M. P.; Goyal, A. Triangular graphene grain growth on cube-textured Cu substrates. Adv. Funct. Mater. 2011, 21, 3868–3874.CrossRefGoogle Scholar
  16. [16]
    Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.CrossRefGoogle Scholar
  17. [17]
    Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890–4896.CrossRefGoogle Scholar
  18. [18]
    Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.CrossRefGoogle Scholar
  20. [20]
    Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.CrossRefGoogle Scholar
  21. [21]
    Yan, Z.; Liu, Y. Y.; Lin, J.; Peng, Z. W.; Wang, G.; Pembroke, E.; Zhou, H. Q.; Xiang, C. S.; Raji, A. R. O.; Samuel, E. L. G. et al. Hexagonal graphene onion rings. J. Am. Chem. Soc. 2013, 135, 10755–10762.CrossRefGoogle Scholar
  22. [22]
    Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.CrossRefGoogle Scholar
  23. [23]
    Jung, D. H.; Kang, C.; Yoon, D.; Cheong, H.; Lee, J. S. Anisotropic behavior of hydrogen in the formation of pentagonal graphene domains. Carbon 2015, 89, 242–248.CrossRefGoogle Scholar
  24. [24]
    Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.CrossRefGoogle Scholar
  25. [25]
    Han, G. H.; Güneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H.-J.; Choi, J.-Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.CrossRefGoogle Scholar
  26. [26]
    Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.CrossRefGoogle Scholar
  27. [27]
    Yuan, Q. H.; Yakobson, B. I.; Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 2014, 5, 3093–3099.CrossRefGoogle Scholar
  28. [28]
    Hayashi, K.; Sato, S.; Yokoyama, N. Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface. Nanotechnology 2013, 24, 025603.CrossRefGoogle Scholar
  29. [29]
    Yan, Z.; Liu, Y. Y.; Ju, L.; Peng, Z. W.; Lin, J.; Wang, G.; Zhou, H. Q.; Xiang, C. S.; Samuel, E. L. G.; Kittrell, C. et al. Large hexagonal Bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem., Int. Ed. 2014, 53, 1565–1569.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kailun Xia
    • 1
    • 2
  • Vasilii I. Artyukhov
    • 3
  • Lifei Sun
    • 1
  • Jingying Zheng
    • 1
  • Liying Jiao
    • 1
  • Boris I. Yakobson
    • 3
  • Yingying Zhang
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina
  3. 3.Department of Materials Science and Nano EngineeringRice UniversityHoustonUSA

Personalised recommendations