Skip to main content
Log in

Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ∼90 ppmg−1·h−1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005.

    Google Scholar 

  2. European Parliament Legislative Resolution of 17 December 2008 on the Proposal for a Directive of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Source (COM(2008)0019-C6-0046/ 2008-2008/0016(COD)); European parliament: Strasbourg, France, 2008.

  3. Yuan, L.; Xu, Y.-J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.

    Article  Google Scholar 

  4. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

    Article  Google Scholar 

  5. Liu, G. H.; Hoivik, N.; Wang, K. Y.; Jakobsen, H. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 2012, 105, 53–68.

    Article  Google Scholar 

  6. Wang, C. J.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53.

    Article  Google Scholar 

  7. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.

    Article  Google Scholar 

  8. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

    Article  Google Scholar 

  9. Kwak, B. S.; Kang, M. Photocatalytic reduction of CO2 with H2O using perovskite Ca x Ti y O3. Appl. Surf. Sci. 2015, 337, 138–144.

    Article  Google Scholar 

  10. Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

    Article  Google Scholar 

  11. Ashley, M.; Magiera, C.; Ramidi, P.; Blackburn, G.; Scott, T. G.; Gupta, R.; Wilson, K.; Ghosh, A.; Biswas, A. Nanomaterials and processes for carbon capture and conversion into useful by-products for a sustainable energy future. Greenh. Gases: Sci. Technol. 2012, 2, 419–444.

    Article  Google Scholar 

  12. Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

    Article  Google Scholar 

  13. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

    Article  Google Scholar 

  14. Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

    Article  Google Scholar 

  15. Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 45, 221–227.

    Article  Google Scholar 

  16. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.

    Article  Google Scholar 

  17. Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun. 2004, 1234–1235.

    Google Scholar 

  18. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B: Environ. 2002, 37, 37–48.

    Article  Google Scholar 

  19. Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91, 1765–1774.

    Article  Google Scholar 

  20. Dey, G. R.; Belapurkar, A. D.; Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J. Photochem. Photobiol. A: Chem. 2004, 163, 503–508.

    Article  Google Scholar 

  21. Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A: Gen. 2003, 249, 11–18.

    Article  Google Scholar 

  22. Guan, G. Q.; Kida, T.; Yoshida, A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B: Environ. 2003, 41, 387–396.

    Article  Google Scholar 

  23. Yahaya, A. H.; Gondal, M. A.; Hameed, A. Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 2004, 400, 206–212.

    Article  Google Scholar 

  24. Chen, H.-C.; Chou, H.-C.; Wu, J. C. S.; Lin, H.-Y. Sol–gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 2008, 23, 1364–1370.

    Article  Google Scholar 

  25. Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl. Catal. B: Environ. 2007, 71, 291–297.

    Article  Google Scholar 

  26. Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized CO2 reduction over pure and platinized TiO2. Top. Catal. 2007, 44, 523–528.

    Article  Google Scholar 

  27. Nguyen, T.-V.; Wu, J. C. S.; Chiou, C.-H. Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal. Commun. 2008, 9, 2073–2076.

    Article  Google Scholar 

  28. Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem. 2005, 7, 667–670.

    Article  Google Scholar 

  29. Sasirekha, N.; Basha, S. J. S; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B: Environ. 2006, 62, 169–180.

    Article  Google Scholar 

  30. Zhao, Z. H.; Fan, J. M.; Wang, Z. Z. Photocatalytic CO2 reduction using sol–gel derived titania-supported zincphthalocyanine. J. Clean. Prod. 2007, 15, 1894–1897.

    Article  Google Scholar 

  31. Sarkar, A.; Shchukarev, A.; Leino, A.-R.; Kordas, K.; Mikkola, J.-P.; Petrov, P. O.; Tuchina, E. S.; Popov, A. P.; Darvin, M. E.; Meinke, M. C. et al. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres. Nanotechnology 2012, 23, 475711.

    Article  Google Scholar 

  32. Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide Co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

    Article  Google Scholar 

  33. Liu, Y.; Zhou, S.; Li, J. M.; Wang, Y. J.; Jiang, G. Y.; Zhao, Z.; Liu, B.; Gong, X. Q.; Duan, A. J.; Liu, J. et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B: Environ. 2015, 168–169, 125–131.

    Article  Google Scholar 

  34. Li, Q. Y.; Zong, L. L.; Li, C.; Yang, J. J. Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458–463.

    Article  Google Scholar 

  35. Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211–20216.

    Article  Google Scholar 

  36. Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

    Article  Google Scholar 

  37. Yang, C. Y.; Wang, W. D.; Shan, Z. C.; Huang, F. Q. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2. J. Solid State Chem. 2009, 182, 807–812.

    Article  Google Scholar 

  38. Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

    Article  Google Scholar 

  39. Zhang, Q.-H.; Han, W.-D.; Hong, Y.-J.; Yu, J.-G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340.

    Article  Google Scholar 

  40. Koci, K.; Mateju, K.; Obalová, L.; Krejcíková, S.; Lacný, Z.; Plachá, D.; Capek, L.; Hospodková, A.; Šolcová, O. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2010, 96, 239–244.

    Article  Google Scholar 

  41. Li, X. K.; Zhuang, Z. J.; Li, W.; Pan, H. Q. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: Gen. 2012, 429–430, 31–38.

    Article  Google Scholar 

  42. Liu, L. J.; Li, Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual. Res. 2014, 14, 453–469.

    Google Scholar 

  43. Meng, X. Q.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.

    Article  Google Scholar 

  44. Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J. L.; Zhang, X. W. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci. 2013, 277, 105–110.

    Article  Google Scholar 

  45. Roy, S.; Hegde, M. S.; Ravishankar, N.; Madras, G. Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J. Phys. Chem. C 2007, 111, 8153–8160.

    Article  Google Scholar 

  46. Galian, R. E.; De la Guardia, M.; Pérez-Prieto, J. Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 2011, 27, 1942–1945.

    Article  Google Scholar 

  47. Trinh, T. T.; Mott, D.; Thanh, N. T. K.; Maenosono, S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv. 2011, 1, 100–108.

    Article  Google Scholar 

  48. Yasuo, I. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.

    Article  Google Scholar 

  49. Wu, M.-C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res. 2011, 4, 360–369.

    Article  Google Scholar 

  50. Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

    Article  Google Scholar 

  51. Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.

    Article  Google Scholar 

  52. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

    Article  Google Scholar 

  53. Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

    Article  Google Scholar 

  54. Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. J. Chem. Phys. 2011, 135, 124701.

    Article  Google Scholar 

  55. He, H. Y.; Zapol, P.; Curtiss, L. A. A theoretical study of CO2 anions on anatase (101) surface. J. Phys. Chem. C 2010, 114, 21474–21481.

    Article  Google Scholar 

  56. Valdés, Á.; Qu, Z.-W.; Kroes, G.-J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

    Article  Google Scholar 

  57. Chen, H. H.; Park, H. Millis, A. J.; Marianetti, C. A. Charge transfer across transition-metal oxide interfaces: Emergent conductance and electronic structure. Phys. Rev. B 2014, 90, 245138.

    Article  Google Scholar 

  58. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

    Article  Google Scholar 

  59. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  60. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  61. Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

    Article  Google Scholar 

  62. Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  63. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and opensource software project for quantum simulations of materials. J. Phys.: Condens. Mat. 2009, 21, 395502.

    Google Scholar 

  64. Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Cryst. B 1991, 47, 462–468.

    Article  Google Scholar 

  65. Swope, R. J.; Smyth, J. R.; Larson, A. C. H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Amer. Mineral. 1995, 80, 448–453.

    Google Scholar 

  66. Landmann, M.; Rauls, E.; Schmidt, W. G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Mat. 2012, 24, 195503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjana Sarkar or Jyri-Pekka Mikkola.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Gracia-Espino, E., Wågberg, T. et al. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 9, 1956–1968 (2016). https://doi.org/10.1007/s12274-016-1087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1087-9

Keywords

Navigation