Nano Research

, Volume 9, Issue 7, pp 1913–1920 | Cite as

Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery

  • Xiangyi Luo
  • Jun Lu
  • Evan Sohm
  • Lu Ma
  • Tianpin Wu
  • Jianguo Wen
  • Dantong Qiu
  • YunKai Xu
  • Yang Ren
  • Dean J. Miller
  • Khalil Amine
Research Article

Abstract

The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeOx/C material was tested as a cathode material in a rechargeable Li–O2 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.

Keywords

Li–O2 battery FeOx atomic cluster electrocatalyst pulsed arc plasma deposition (APD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Bruce, P. G.; Hardwick, L. J.; Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 2011, 36, 506–512.CrossRefGoogle Scholar
  4. [4]
    Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A critical review of Li/air batteries. J. Electrochem. Soc. 2012, 159, R1–R30.CrossRefGoogle Scholar
  5. [5]
    Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 2014, 114, 5611–5640.CrossRefGoogle Scholar
  6. [6]
    Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by cop as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462–469.CrossRefGoogle Scholar
  7. [7]
    Lei, Y.; Lu, J.; Luo, X.; Wu, T.; Du, P.; Zhang, X.; Ren, Y.; Wen, J.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium–O2 battery. Nano Lett. 2013, 13, 4182–4189.CrossRefGoogle Scholar
  8. [8]
    Lu, J.; Lei, Y.; Lau, K. C.; Luo, X.; Du, P.; Wen, J.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W. et al. A nanostructured cathode architecture for low charge overpotential in lithiumoxygen batteries. Nat. Commun. 2013, 4, 2383.Google Scholar
  9. [9]
    Lu, Y. C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.CrossRefGoogle Scholar
  10. [10]
    Luo, X.; Piernavieja-Hermida, M.; Lu, J.; Wu, T.; Wen, J.; Ren, Y.; Miller, D.; Fang, Z. Z.; Lei, Y.; Amine, K. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: An effective electrochemical catalyst for Li-O2 battery. Nanotechnology 2015, 26, 164003.CrossRefGoogle Scholar
  11. [11]
    Aboagye, A.; Elbohy, H.; Kelkar, A. D.; Qiao, Q.; Zai, J.; Qian, X.; Zhang, L. Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells. Nano Energy 2015, 11, 550–556.CrossRefGoogle Scholar
  12. [12]
    Gerloch, M.; Constable, E. C. An introduction to transitionmetal chemistry. In Transition metal chemistry. Durrant, M. C., Ed., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 1–19.CrossRefGoogle Scholar
  13. [13]
    Agawa, Y.; Endo, S.; Matsuura, M.; Ishii, Y. Behaviors of metal nano-particles prepared by coaxial vacuum arc deposition. Adv. Mater. Res. 2010, 123–125, 1067–1070.CrossRefGoogle Scholar
  14. [14]
    Yamamoto, Y.; Agawa, Y.; Hara, Y.; Amano, S.; Chayahara, A.; Horino, Y.; Fujii, K. Development of a coaxial type vacuum arc evaporation source. In Proceedings of the 1998 International Conference on Ion Implantation Technology Proceedings, Kyoto, 1999, pp 1148–1150.Google Scholar
  15. [15]
    Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.CrossRefGoogle Scholar
  16. [16]
    Lu, J.; Qin, Y.; Du, P.; Luo, X.; Wu, T.; Ren, Y.; Wen, J.; Miller, D. J.; Miller, J. T.; Amine, K. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: Application for rechargeable Li-O2 batteries. RSC Adv. 2013, 3, 8276–8285.CrossRefGoogle Scholar
  17. [17]
    Serov, A.; Artyushkova, K.; Niangar, E.; Wang, C.; Dale, N.; Jaouen, F.; Sougrati, M. T.; Jia, Q. Y.; Mukerjee, S.; Atanassov, P. Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy 2015, 16, 293–300.CrossRefGoogle Scholar
  18. [18]
    Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.CrossRefGoogle Scholar
  19. [19]
    Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S.; Wang, H.-H.; Redfern, P. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat. Commun. 2014, 5, 4895.CrossRefGoogle Scholar
  20. [20]
    Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J. Chem. Phys. 2011, 135, 214704.CrossRefGoogle Scholar
  21. [21]
    Assary, R. S.; Lu, J.; Du, P.; Luo, X.; Zhang, X.; Ren, Y.; Curtiss, L. A.; Amine, K. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: Insights from experimental and computational studies. ChemSusChem 2013, 6, 51–55.CrossRefGoogle Scholar
  22. [22]
    Assary, R. S.; Lu, J.; Luo, X.; Zhang, X.; Ren, Y.; Wu, H.; Albishri, H. M.; El-Hady, D. A.; Al-Bogami, A. S.; Curtiss, L. A. et al. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode. ChemPhysChem 2014, 15, 2077–2083.CrossRefGoogle Scholar
  23. [23]
    Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem., Int. Ed. 2011, 50, 8609–8613.CrossRefGoogle Scholar
  24. [24]
    Du, P.; Lu, J.; Lau, K. C.; Luo, X.; Bareño, J.; Zhang, X.; Ren, Y.; Zhang, Z.; Curtiss, L. A.; Sun, Y. K. et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 2013, 15, 5572–5581.CrossRefGoogle Scholar
  25. [25]
    Zhang, Z. C.; Lu, J.; Assary, R. S.; Du, P.; Wang, H. H.; Sun, Y. K.; Qin, Y.; Lau, K. C.; Greeley, J.; Redfern, P. C. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 2011, 115, 25535–25542.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiangyi Luo
    • 1
  • Jun Lu
    • 2
  • Evan Sohm
    • 3
  • Lu Ma
    • 4
  • Tianpin Wu
    • 4
  • Jianguo Wen
    • 5
  • Dantong Qiu
    • 2
  • YunKai Xu
    • 1
  • Yang Ren
    • 4
  • Dean J. Miller
    • 5
  • Khalil Amine
    • 2
  1. 1.Material Sciences DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA
  3. 3.ULVAC Technologies, Inc.MethuenUSA
  4. 4.Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  5. 5.Center for Nanoscale Materials, Nanoscience and TechnologyArgonne National LaboratoryArgonneUSA

Personalised recommendations