Ternary supramolecular quantum-dot network flocculation for selective lectin detection

Abstract

We present a versatile, tuneable, and selective nanoparticle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are β-cyclodextrin-capped CdTe quantum dots, tetraethylene glycol-tethered mannose-adamantane cross-linkers (ADTEGMan), and the tetravalent lectin Concanavalin A (ConA). The working principle of this selective sensor lies in the dual orthogonal molecular interactions of the linker, uniting adamantane-β-cyclodextrin and mannose-lectin interaction motifs, respectively. Only when the lectin is present, sequential binding takes place, leading to in situ self-organization of the sensor through the formation of ternary supramolecular networks. Monitoring the loss of fluorescence signal of the quantum dots in solution, caused by controlled network formation and consecutive flocculation and sedimentation, leads to selective, qualitative, and quantitative lectin detection. Fluorescent sedimented networks can be observed by the naked eye or under UV illumination for a lectin concentration of up to 10−8 M. Quantitative detection is possible at 100 min with a lower detection limit of approximately 5 × 10−8 M.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wee, E. J. H.; Lau, H. Y.; Botella, J. R.; Trau, M. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun. 2015, 51, 5828–5831.

    Article  Google Scholar 

  2. [2]

    Valentini, P.; Pompa, P. P. Gold nanoparticles for nakedeye DNA detection: Smart designs for sensitive assays. RSC Adv. 2013, 3, 19181–19190.

    Article  Google Scholar 

  3. [3]

    Witten, K. G.; Rech, C.; Eckert, T.; Charrak, S.; Richtering, W.; Elling, L.; Simon, U. Glyco-DNA–gold nanoparticles: Lectin-mediated assembly and dual-stimuli response. Small 2011, 7, 1954–1960.

    Article  Google Scholar 

  4. [4]

    Hu, X.-L.; Jin, H.-Y.; He, X.-P.; James, T. D.; Chen, G.-R.; Long, Y.-T. Colorimetric and plasmonic detection of lectins using core–shell gold glyconanoparticles prepared by copperfree click chemistry. ACS Appl. Mater. Interfaces 2015, 7, 1874–1878.

    Article  Google Scholar 

  5. [5]

    Chapman, R.; Lin, Y. Y.; Burnapp, M.; Bentham, A.; Hillier, D.; Zabron, A.; Khan, S.; Tyreman, M.; Stevens, M. M. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 2015, 9, 2565–2573.

    Article  Google Scholar 

  6. [6]

    Richards, S.-J.; Fullam, E.; Besra, G. S.; Gibson, M. I. Discrimination between bacterial phenotypes using glyconanoparticles and the impact of polymer coating on detection readouts. J. Mater. Chem. B 2014, 2, 1490–1498.

    Article  Google Scholar 

  7. [7]

    Marín, M. J.; Rashid, A.; Rejzek, M.; Fairhurst, S. A.; Wharton, S. A.; Martin, S. R.; McCauley, J. W.; Wileman, T.; Field, R. A.; Russell, D. A. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org. Biomol. Chem. 2013, 11, 7101–7107.

    Article  Google Scholar 

  8. [8]

    Souza, G. R.; Christianson, D. R.; Staquicini, F. I.; Ozawa, M. G.; Snyder, E. Y.; Sidman, R. L.; Miller, J. H.; Arap, W.; Pasqualini, R. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA 2006, 103, 1215–1220.

    Article  Google Scholar 

  9. [9]

    Liu, Y.; Yin, J.-J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719–1730.

    Article  Google Scholar 

  10. [10]

    Verma, A.; Rotello, V. M. Surface recognition of biomacromolecules using nanoparticle receptors. Chem. Commun. 2005, 303–312.

    Google Scholar 

  11. [11]

    Kameta, N.; Masuda, M.; Shimizu, T. Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chem. Commun. 2015, 51, 6816–6819.

    Article  Google Scholar 

  12. [12]

    Cheng, J. J.; Sun, Y.; Zhou, L.; Zhang, K. C.; Wang, J.; Wu, Z. Y.; Pei, R. J. Phosphorylation triggered poly-nanoparticle assembly for naked-eye distinguishable T4 polynucleotide kinase detection. RSC Adv. 2014, 4, 56731–56735.

    Article  Google Scholar 

  13. [13]

    de la Rica, R.; Stevens, M. M. Plasmonic elisa for the detection of analytes at ultralow concentrations with the naked eye. Nat. Prot. 2013, 8, 1759–1764.

    Article  Google Scholar 

  14. [14]

    de la Rica, R.; Fratila, R. M.; Szarpak, A.; Huskens, J.; Velders, A. H. Multivalent nanoparticle networks as ultrasensitive enzyme sensors. Angew. Chem. 2011, 123, 5822–5825.

    Article  Google Scholar 

  15. [15]

    Krings, J. A.; Vonhören, B.; Tegeder, P.; Siozios, V.; Peterlechner, M.; Ravoo, B. J. Light-responsive aggregation of β-cyclodextrin covered silica nanoparticles. J. Mater. Chem. A 2014, 2, 9587–9593.

    Article  Google Scholar 

  16. [16]

    Stevens, M. M.; Flynn, N. T.; Wang, C.; Tirrell, D. A.; Langer, R. Coiled-coil peptide-based assembly of gold nanoparticles. Adv. Mater. 2004, 16, 915–918.

    Article  Google Scholar 

  17. [17]

    Samanta, A.; Ravoo, B. J. Magnetic separation of proteins by a self-assembled supramolecular ternary complex. Angew. Chem., Int. Ed. 2014, 53, 12946–12950.

    Article  Google Scholar 

  18. [18]

    Nalluri, S. K. M.; Voskuhl, J.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Light-responsive capture and release of DNA in a ternary supramolecular complex. Angew. Chem., Int. Ed. 2011, 50, 9747–9751.

    Article  Google Scholar 

  19. [19]

    Basuki, J. S.; Esser, L.; Duong, H. T. T.; Zhang, Q.; Wilson, P.; Whittaker, M. R.; Haddleton, D. M.; Boyer, C.; Davis, T. P. Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chem. Sci. 2014, 5, 715–726.

    Article  Google Scholar 

  20. [20]

    Jayawardena, H. S. N.; Wang, X.; Yan, M. D. Classification of lectins by pattern recognition using glyconanoparticles. Anal. Chem. 2013, 85, 10277–10281.

    Article  Google Scholar 

  21. [21]

    Reynolds, M.; Marradi, M.; Imberty, A.; Penadés, S.; Pérez, S. Multivalent gold glycoclusters: High affinity molecular recognition by bacterial lectin PA-IL. Chem.—Eur. J. 2012, 18, 4264–4273.

    Article  Google Scholar 

  22. [22]

    Manikandan, B.; Ramar, M. Detection and characterization of natural and inducible lectins in human serum. Results Immunol. 2012, 2, 132–141.

    Article  Google Scholar 

  23. [23]

    Martínez-Ávila, O.; Bedoya, L. M.; Marradi, M.; Clavel, C.; Alcamí, J.; Penadés, S. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem 2009, 10, 1806–1809.

    Article  Google Scholar 

  24. [24]

    Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A. Colorimetric detection of Ricinus communis agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626–634.

    Article  Google Scholar 

  25. [25]

    Yilmaz, G.; Becer, C. R. Glyconanoparticles and their interactions with lectins. Polym. Chem. 2015, 6, 5503–5514.

    Article  Google Scholar 

  26. [26]

    Marín, M. J.; Schofield, C. L.; Field, R. A.; Russell, D. A. Glyconanoparticles for colorimetric bioassays. Analyst 2015, 140, 59–70.

    Article  Google Scholar 

  27. [27]

    Chen, X.; Ramström, O.; Yan, M. D. Glyconanomaterials: Emerging applications in biomedical research. Nano Res. 2014, 7, 1381–1403.

    Article  Google Scholar 

  28. [28]

    Wittmann, V.; Pieters, R. J. Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 2013, 42, 4492–4503.

    Article  Google Scholar 

  29. [29]

    Ahirwar, R.; Nahar, P. Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis. J. Agric. Food Chem. 2015, 63, 4104–4111.

    Article  Google Scholar 

  30. [30]

    Shi, Z.; Chen, J.; Li, C.-Y.; An, N.; Wang, Z.-J.; Yang, S.-L.; Huang, K.-F.; Bao, J.-K. Antitumor effects of concanavalin A and sophora flavescens lectin in vitro and in vivo. Acta Pharmacol. Sinica 2014, 35, 248–256.

    Article  Google Scholar 

  31. [31]

    Sánchez-Pomales, G.; Morris, T. A.; Falabella, J. B.; Tarlov, M. J.; Zangmeister, R. A. A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol. Bioeng. 2012, 109, 2240–2249.

    Article  Google Scholar 

  32. [32]

    Sato, Y.; Murakami, T.; Yoshioka, K.; Niwa, O. 12-Mercaptododecyl β-maltoside-modified gold nanoparticles: Specific ligands for concanavalin A having long flexible hydrocarbon chains. Anal. Bioanal. Chem. 2008, 391, 2527–2532.

    Article  Google Scholar 

  33. [33]

    Babu, P.; Sinha, S.; Surolia, A. Sugar–quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem. 2007, 18, 146–151.

    Article  Google Scholar 

  34. [34]

    Earhart, C.; Jana, N. R.; Erathodiyil, N.; Ying, J. Y. Synthesis of carbohydrate-conjugated nanoparticles and quantum dots. Langmuir 2008, 24, 6215–6219.

    Article  Google Scholar 

  35. [35]

    Soman, C.; Giorgio, T. Kinetics of molecular recognition mediated nanoparticle self-assembly. Nano Res. 2009, 2, 78–84.

    Article  Google Scholar 

  36. [36]

    Poderys, V.; Matulionyte, M.; Selskis, A.; Rotomskis, R. Interaction of water-soluble CdTe quantum dots with bovine serum albumin. Nanoscale Res. Lett. 2011, 6, 9.

    Google Scholar 

  37. [37]

    Alvarez, J.; Liu, J.; Román, E.; Kaifer, A. E. Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem. Commun. 2000, 1151–1152.

    Google Scholar 

  38. [38]

    Kauscher, U.; Ravoo, B. J. Mannose-decorated cyclodextrin vesicles: The interplay of multivalency and surface density in lectin–carbohydrate recognition. Beilstein J. Org. Chem. 2012, 8, 1543–1551.

    Article  Google Scholar 

  39. [39]

    Chmurski, K.; Defaye, J. An improved synthesis of per(6-deoxyhalo) cyclodextrins using N-halosuccinimides—Triphenylphosphine in dimethylformamide. Supramol. Chem. 2000, 12, 221–224.

    Article  Google Scholar 

  40. [40]

    Rojas, M. T.; Koeniger, R.; Stoddart, J. F.; Kaifer, A. E. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated.beta.-cyclodextrin derivative. J. Am. Chem. Soc. 1995, 117, 336–343.

    Article  Google Scholar 

  41. [41]

    Perumal, S.; Hofmann, A.; Scholz, N.; Rühl, E.; Graf, C. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles. Langmuir 2011, 27, 4456–4464.

    Article  Google Scholar 

  42. [42]

    Shi, Y.; Goodisman, J.; Dabrowiak, J. C. Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. Inorg. Chem. 2013, 52, 9418–9426.

    Article  Google Scholar 

  43. [43]

    Villafiorita-Monteoleone, F.; Daita, V.; Quarti, C.; Perdicchia, D.; Del Buttero, P.; Scavia, G.; del Zoppo, M.; Botta, C. Light harvesting of CdSe/CdS quantum dots coated with β-cyclodextrin based host–guest species through resonant energy transfer from the guests. RSC Adv. 2014, 4, 28886–28892.

    Article  Google Scholar 

  44. [44]

    Ambrosi, M.; Cameron, N. R.; Davis, B. G. Lectins: Tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 2005, 3, 1593–1608.

    Article  Google Scholar 

  45. [45]

    Otten, L.; Gibson, M. I. Discrimination between lectins with similar specificities by ratiometric profiling of binding to glycosylated surfaces; a chemical “tongue” approach. RSC Adv. 2015, 5, 53911–53914.

    Article  Google Scholar 

  46. [46]

    Zhang, J. T.; Cai, Z. Y.; Kwak, D. H.; Liu, X. Y.; Asher, S. A. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A. Anal. Chem. 2014, 86, 9036–9041.

    Article  Google Scholar 

  47. [47]

    Chen, Q. S.; Wei, W. L.; Lin, J. M. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens. Bioelectron. 2011, 26, 4497–4502.

    Article  Google Scholar 

  48. [48]

    Lim, K. R.; Ahn, K. S.; Lee, W. Y. Detection of concanavalin A based on attenuated fluorescence resonance energy transfer between quantum dots and mannose-stabilized gold nanoparticles. Anal. Methods 2013, 5, 64–67.

    Article  Google Scholar 

  49. [49]

    Szunerits, S.; Niedziǒłka-Jönsson, J.; Boukherroub, R.; Woisel, P.; Baumann, J. S.; Siriwardena, A. Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces. Anal. Chem. 2010, 82, 8203–8210.

    Article  Google Scholar 

  50. [50]

    Sato, K.; Anzai, J.-i. Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Anal. Bioanal. Chem. 2006, 384, 1297–1301.

    Article  Google Scholar 

  51. [51]

    Wang, X.; Ramström, O.; Yan, M. D. Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst 2011, 136, 4174–4178.

    Article  Google Scholar 

  52. [52]

    Hone, D. C.; Haines, A. H.; Russell, D. A. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 2003, 19, 7141–7144.

    Article  Google Scholar 

  53. [53]

    Schofield, C. L.; Haines, A. H.; Field, R. A.; Russell, D. A. Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 2006, 22, 6707–6711.

    Article  Google Scholar 

  54. [54]

    Bogdan, N.; Vetrone, F.; Roy, R.; Capobianco, J. A. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J. Mater. Chem. 2010, 20, 7543–7550.

    Article  Google Scholar 

  55. [55]

    Lyu, Y.-K.; Lim, K.-R.; Lee, B. Y.; Kim, K. S.; Lee, W.-Y. Microgravimetric lectinbiosensor based on signal amplification using carbohydrate-stabilized gold nanoparticles. Chem. Commun. 2008, 4771–4773.

    Google Scholar 

  56. [56]

    Mahon, E.; Mouline, Z.; Silion, M.; Gilles, A.; Pinteala, M.; Barboiu, M. Multilayer lectin–glyconanoparticles architectures for QCM enhanced detection of sugar–protein interaction. Chem. Commun. 2013, 49, 3004–3006.

    Article  Google Scholar 

  57. [57]

    Min, I.-H.; Choi, L.; Ahn, K.-S.; Kim, B. K.; Lee, B. Y.; Kim, K. S.; Choi, H. N.; Lee, W.-Y. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens. Bioelectron. 2010, 26, 1326–1331.

    Article  Google Scholar 

  58. [58]

    Vedala, H.; Chen, Y.; Cecioni, S.; Imberty, A.; Vidal, S.; Star, A. Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett. 2011, 11, 170–175.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aldrik H. Velders.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oikonomou, M., Wang, J., Carvalho, R.R. et al. Ternary supramolecular quantum-dot network flocculation for selective lectin detection. Nano Res. 9, 1904–1912 (2016). https://doi.org/10.1007/s12274-016-1082-1

Download citation

Keywords

  • supramolecular
  • cyclodextrin
  • quantum dot
  • sensor
  • lectin
  • flocculation