Advertisement

Nano Research

, Volume 9, Issue 6, pp 1674–1681 | Cite as

Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria

  • Pauline Vitry
  • Rolando Rebois
  • Eric Bourillot
  • Ariane Deniset-Besseau
  • Marie-Joelle Virolle
  • Eric Lesniewska
  • Alexandre Dazzi
Research Article

Abstract

We propose a new analytical approach combining vibrational spectroscopy and acoustic tomography for the detection and characterization of vesicles inside Streptomyces bacteria. Using atomic force microscopy and infrared spectroscopy (AFM-IR), we detect the presence of triglyceride vesicles. Their sizes in depth are measured with high accuracy using mode synthesizing atomic force microscopy (MS-AFM). We conducted a comparative study of AFM-IR and MS-AFM, and highlighted the advantages of the coupling of these techniques in having a full characterization (chemical, topographical, and volumetric) of a biological sample. With these complementary techniques, a complete access to the vesicle size distribution has been achieved with an accuracy of less than 50 nm. A 3D reconstruction of bacteria showing the in-depth distribution of vesicles is given to underline the great potential of the acoustic method.

Keywords

nanoscale subsurface imaging atomic force microscopy acoustic microscopy infrared microscopy biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639.CrossRefGoogle Scholar
  2. [2]
    Ranade, N.; Vining, L. C. Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can. J. Microbiol. 1993, 39, 377–383.CrossRefGoogle Scholar
  3. [3]
    Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729.CrossRefGoogle Scholar
  4. [4]
    Chen, F.; Dixon, R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007, 25, 759–761.CrossRefGoogle Scholar
  5. [5]
    Atsumi, S.; Liao, J. C. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 2008, 19, 414–419.CrossRefGoogle Scholar
  6. [6]
    Lu, X. F.; Vora, H.; Khosla, C. Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab. Eng. 2008, 10, 333–339.CrossRefGoogle Scholar
  7. [7]
    Bokinsky, G.; Peralta-Yahya, P. P.; George, A.; Holmes, B. M.; Steen, E. J.; Dietrich, J.; Lee, T. S.; Tullman-Ercek, D.; Voigt, C. A.; Simmons, B. A. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA 2011, 108, 19949–19954.CrossRefGoogle Scholar
  8. [8]
    Hopwood, D. A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: Oxford, 2007.Google Scholar
  9. [9]
    Butler, P. R.; Brown, M.; Oliver, S. G. Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185–196.CrossRefGoogle Scholar
  10. [10]
    Goodfellow, M.; Williams, S. T.; Mordarski, M. Actinomycetes in Biotechnology; Academic Press: San Diego, 1988.Google Scholar
  11. [11]
    Coze, F.; Gilard, F.; Tcherkez, G.; Virolle, M.-J.; Guyonvarch, A. Carbon-flux distribution within Streptomyces coelicolor metabolism: A comparison between the actinorhodinproducing strain M145 and its non-producing derivative M1146. PLoS One 2013, 8, e84151.CrossRefGoogle Scholar
  12. [12]
    Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.CrossRefGoogle Scholar
  13. [13]
    Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T. R.; Quate, C. F. Atomic resolution with atomic force microscope. EPL (Europhys. Lett.) 1987, 3, 1281–1286.CrossRefGoogle Scholar
  14. [14]
    Kulik, A.; Attal, J.; Gremaud, G. Nearfield scanning acoustic microscopy. In Acoustical Imaging. Wei, Y.; Gu, B. L., Eds.; Springer: US, 1993; pp 241–244.CrossRefGoogle Scholar
  15. [15]
    Passian, A.; Thundat, T. G.; Tetard, L. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing. U. S. Patent 8,448,261, May 18, 2004.Google Scholar
  16. [16]
    Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493–1495.CrossRefGoogle Scholar
  17. [17]
    Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V. P.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. Nanotechnol. 2008, 3, 501–505.CrossRefGoogle Scholar
  18. [18]
    Shekhawat, G.; Dravid, V. Seeing the invisible: Scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 2006, 12, 1214–1215.CrossRefGoogle Scholar
  19. [19]
    Hammiche, A.; Pollock, H. M.; Reading, M.; Claybourn, M.; Turner, P. H.; Jewkes, K. Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl. Spectrosc. 1999, 53, 810–815.CrossRefGoogle Scholar
  20. [20]
    Müller, T.; Ruggeri, F. S.; Kulik, A. J.; Shimanovich, U.; Mason, T. O.; Knowles, T. P. J.; Dietler, G. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 2014, 14, 1315–1319.CrossRefGoogle Scholar
  21. [21]
    Policar, C.; Waern, J. B.; Plamont, M. A.; Clède, S.; Mayet, C.; Prazeres, R.; Ortega, J. M.; Vessières, A.; Dazzi, A. Subcellular IR imaging of a metal–carbonyl moiety using photothermally induced resonance. Angew. Chem. 2011, 123, 890–894.CrossRefGoogle Scholar
  22. [22]
    Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365–1384.CrossRefGoogle Scholar
  23. [23]
    Prater, C.; Kjoller, K.; Shetty, R. Nanoscale infrared spectroscopy. Mater. Today 2010, 13, 56–60.CrossRefGoogle Scholar
  24. [24]
    Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Detection limits in photothermal microscopy. Chem. Sci. 2010, 1, 343–350.CrossRefGoogle Scholar
  25. [25]
    Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.CrossRefGoogle Scholar
  26. [26]
    Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Analysis of nano-chemical mapping performed by an AFM-based (“AFMIR”) acousto-optic technique. Ultramicroscopy 2007, 107, 1194–1200.CrossRefGoogle Scholar
  27. [27]
    Wig, A.; Arakawa, E. T.; Passian, A.; Ferrell, T. L.; Thundat, T. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers. Sensor. Actuat. B: Chem. 2006, 114, 206–211.CrossRefGoogle Scholar
  28. [28]
    Lahiri, B.; Holland, G.; Centrone, A. Chemical imaging beyond the diffraction limit: Experimental validation of the PTIR technique. Small 2013, 9, 439–445.CrossRefGoogle Scholar
  29. [29]
    Deniset-Besseau, A.; Prater, C. B.; Virolle, M.-J.; Dazzi, A. Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J. Phys. Chem. Lett. 2014, 5, 654–658.CrossRefGoogle Scholar
  30. [30]
    Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.CrossRefGoogle Scholar
  31. [31]
    Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Calkins, E.; Tetard, L.; Lesniewska, E. Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures. Nano Res. 2015, 8, 2199–2205.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pauline Vitry
    • 1
  • Rolando Rebois
    • 2
  • Eric Bourillot
    • 1
  • Ariane Deniset-Besseau
    • 2
  • Marie-Joelle Virolle
    • 3
  • Eric Lesniewska
    • 1
  • Alexandre Dazzi
    • 2
  1. 1.ICB UMR CNRS 6303University of Bourgogne Franche ComtéDijonFrance
  2. 2.LCP UMR CNRS 8000University Paris-SudOrsayFrance
  3. 3.I2BC UMR CNRS 9198University Paris-SudGif-Sur-YvetteFrance

Personalised recommendations