Nano Research

, Volume 9, Issue 6, pp 1561–1569 | Cite as

Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting

Research Article

Abstract

In this study, a potentially universal new strategy is reported for the large-scale, low-cost fabrication of visible-light-active highly ordered heteronanostructures based on the spontaneous photoelectric-field-enhancement effect inherent in pyramidal morphology. The hierarchical vertically oriented arrayed structures comprise an active molecular co-catalyst at the apex of a visible-light-active large band gap semiconductor for low-cost solar water splitting in a neutral aqueous medium without the use of a sacrificial agent.

Keywords

bismuth vanadate co-catalysts photocatalysis solar water splitting oxygen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1050_MOESM1_ESM.pdf (2.6 mb)
Supplementary material, approximately 2691 KB.

References

  1. [1]
    Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.CrossRefGoogle Scholar
  2. [2]
    Liang, D.; Huo, Y. J.; Kang, Y. S.; Wang, K. X.; Gu, A. J.; Tan, M.; Yu, Z. F.; Li, S.; Jia, J. Y.; Bao, X. Y. et al. Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays. Adv. Energy Mater. 2012, 2, 1254–1260.CrossRefGoogle Scholar
  3. [3]
    Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F. Y.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 2014, 8, 3752–3760.CrossRefGoogle Scholar
  4. [4]
    Wang, X. J.; Tian, J. F.; Yang, T. Z.; Bao, L. H.; Hui, C.; Liu, F.; Shen, C. M.; Xu, N. S.; Gao, H. J. Single crystalline boron nanocones: Electric transport and field emission properties. Adv. Mater. 2007, 19, 4480–4485.CrossRefGoogle Scholar
  5. [5]
    Toma, M.; Loget, G.; Corn, R. M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Lett. 2013, 13, 6164–6169.CrossRefGoogle Scholar
  6. [6]
    Wang, K. X. Z.; Wu, Z. F.; Liu, V.; Brongersma, M. L.; Jaramillo, T. F.; Fan, S. H. Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting. ACS Photonics 2014, 1, 235–240.CrossRefGoogle Scholar
  7. [7]
    Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856–861.CrossRefGoogle Scholar
  8. [8]
    Li, W.; Wu, Z. X.; Wang, J. X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.CrossRefGoogle Scholar
  9. [9]
    Wang, N.; Wang, D. G.; Li, M. R.; Shi, J. Y.; Li, C. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Nanoscale 2014, 6, 2061–2066.CrossRefGoogle Scholar
  10. [10]
    Mayer, M. T.; Lin, Y. J.; Yuan, G. B.; Wang, D. W. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc. Chem. Res. 2013, 46, 1558–1566.CrossRefGoogle Scholar
  11. [11]
    Shao, M. F.; Ning, F. Y.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 2014, 24, 580–586.CrossRefGoogle Scholar
  12. [12]
    Rao, P. M.; Cai, L. L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P. D.; Zheng, X. L. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105.CrossRefGoogle Scholar
  13. [13]
    Sun, S. M.; Wang, W. Z.; Li, D. Z.; Zhang, L.; Jiang, D. Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal. 2014, 4, 3498–3503.CrossRefGoogle Scholar
  14. [14]
    Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 2003, 2908–2909.Google Scholar
  15. [15]
    Abdi, F. F.; Dabirian, A.; Dam, B.; van de Krol, R. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 15272–15277.CrossRefGoogle Scholar
  16. [16]
    Su, J. Z.; Guo, L. J.; Bao, N. Z.; Grimes, C. A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928–1933.CrossRefGoogle Scholar
  17. [17]
    Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.CrossRefGoogle Scholar
  18. [18]
    Wang, T.; Li, C. J.; Ji, J. Y.; Wei, Y. J.; Zhang, P.; Wang, S. P.; Fan, X. B.; Gong, J. L. Reduced graphene oxide (rGO)/BiVO4 composites with maximized interfacial coupling for visible light photocatalysis. ACS Sustainable Chem. Eng. 2014, 2, 2253–2258.CrossRefGoogle Scholar
  19. [19]
    Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. W. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568–12571.CrossRefGoogle Scholar
  20. [20]
    Usai, S.; Obregón, S.; Becerro, A. I.; Colón, G. Monoclinictetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J. Phys. Chem. C 2013, 117, 24479–24484.CrossRefGoogle Scholar
  21. [21]
    Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.CrossRefGoogle Scholar
  22. [22]
    McDowell, M. T.; Lichterman, M. F.; Spurgeon, J. M.; Hu, S.; Sharp, I. D.; Brunschwig, B. S.; Lewis, N. S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 2014, 118, 19618–19624.CrossRefGoogle Scholar
  23. [23]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  24. [24]
    Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobaltphosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109–114.CrossRefGoogle Scholar
  25. [25]
    Jeon, T. H.; Choi, W.; Park, H. Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Phys. Chem. Chem. Phys. 2011, 13, 21392–21401.CrossRefGoogle Scholar
  26. [26]
    Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Turner, J. A.; Brown, L. D.; Herring, A. M. Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semitransparent, porous SiO2-BiVO4 electrodes. Phys. Chem. Chem. Phys. 2012, 14, 7032–7039.CrossRefGoogle Scholar
  27. [27]
    Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028–5034.CrossRefGoogle Scholar
  28. [28]
    Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.CrossRefGoogle Scholar
  29. [29]
    Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628.CrossRefGoogle Scholar
  30. [30]
    Roth, R. S.; Waring, J. L. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds. Am. Mineral. 1963, 48, 1348–1356.Google Scholar
  31. [31]
    Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.CrossRefGoogle Scholar
  32. [32]
    Sleight, A. W.; Chen, H. Y.; Ferretti, A.; Cox, D. E. Crystal growth and structure of BiVO4. Mater. Res. Bull. 1979, 14, 1571–1581.CrossRefGoogle Scholar
  33. [33]
    McDonald, K. J.; Choi, K. S. Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 2011, 23, 1686–1693.CrossRefGoogle Scholar
  34. [34]
    Su, J.; Zou, X. X.; Li, G. D.; Wei, X.; Yan, C.; Wang, Y. N.; Zhao, J.; Zhou, L. J.; Chen, J. S. Macroporous V2O5-BiVO4 composites: Effect of heterojunction on the behavior of photogenerated charges. J. Phys. Chem. C 2011, 115, 8064–8071.CrossRefGoogle Scholar
  35. [35]
    Chen, L.; Aarcón-Ladó, E.; Hettick, M.; Sharp, I. D.; Lin, Y. J.; Javey, A.; Ager, J. W. Reactive sputtering of bismuth vanadate photoanodes for solar water splitting. J. Phys. Chem. C 2013, 117, 21635–21642.CrossRefGoogle Scholar
  36. [36]
    Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J. H.; Ager, J. W.; Yano, J.; Sharp, I. D. Electronic structure of monoclinic BiVO4. Chem. Mater. 2014, 26, 5365–5373.CrossRefGoogle Scholar
  37. [37]
    Kweon, K. E.; Hwang, G. S. Structural phase-dependent hole localization and transport in bismuth vanadate. Phys. Rev. B 2013, 87, 205202.CrossRefGoogle Scholar
  38. [38]
    Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633–20636.CrossRefGoogle Scholar
  39. [39]
    Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J. S.; Bard, A. J.; Mullins, C. B. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 2013, 135, 11389–11396.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.International Research Center for Renewable Energy, State Key Laboratory for Multiphase Flow in Power Engineering, School of Energy & Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations