Skip to main content
Log in

Dual response of graphene-based ultra-small molecular junctions to defect engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It has been reported that N and B doping induce a quasi-bound state that suppresses the conduction in graphene nanoribbon (GNR)-based junctions, while an H defect or a pyridine-like N-atom (PN) substitution at the edge of the GNR does not affect the transmission close to the Fermi energy. However, these results may vary when the size of the functional unit of the GNR junction decreases to a molecular level. In this study, a defect is introduced to a test-bed architecture consisting of a polyacene bridging two zigzag GNR electrodes, which changes the molecular state alignment and coupling to the electrode states, and varies the equivalence between two eigen-channels at the Fermi level. It is revealed that B and N atom substitution, and H defects play a dual role in the molecular conductance, whereas the PN substitution acts as an ineffective dopant. The results obtained from density functional theory combined with the non-equilibrium Green’s function method aid in determining the optimal design for the GNR-based ultra-small molecular devices via defect engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukata, N. Impurity doping in silicon nanowires. Adv. Mater. 2009, 21, 2829–2832.

    Article  Google Scholar 

  2. Pierre, M.; Wacquez, R.; Jeh, X.; Sanquer, M.; Vinet, M.; Cueto, O. Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 2010, 5, 133–137.

    Article  Google Scholar 

  3. Kepenekian, M.; Robles, R.; Joachim, C.; Lorente, N. Surface-state engineering for interconnects on H-passivated Si(100). Nano Lett. 2013, 13, 1192–1195.

    Article  Google Scholar 

  4. Jelínek, P.; Švec, M.; Pou, P.; Perez, R.; Cháb, V. Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys. Rev. Lett. 2008, 101, 176101.

    Article  Google Scholar 

  5. Dou, K. P.; Fan, W.; Niehaus, T. A.; Frauenheim, T.; Wang, C. L.; Zhang, X. H.; Zhang, R. Q. Electron transport suppression from tip-π state interaction on Si(100)-2×1 surfaces. J. Chem. Theory Comput. 2011, 7, 707–712.

    Article  Google Scholar 

  6. Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2917–2920.

    Article  Google Scholar 

  7. Yang, S. H.; Shin, W. H.; Kang, J. K. The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: Dependence on diameter and helicity. Small 2008, 4, 437–441.

    Article  Google Scholar 

  8. Yu, S. S.; Zheng, W. T. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2010, 2, 1069–1082.

    Article  Google Scholar 

  9. Martins, T. B.; Miwa, R. H.; da Silva, A. J. R.; Fazzio, A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 196803.

    Article  Google Scholar 

  10. Biel, B.; Blase, X.; Triozon, F.; Roche, S. Anomalous doping effects on charge transport in graphene nanoribbons. Phys. Rev. Lett. 2009, 102, 096803.

    Article  Google Scholar 

  11. Yu, S. S.; Zheng, W. T.; Wen, Q. B.; Jiang, Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 2008, 46, 537–543.

    Article  Google Scholar 

  12. Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 2009, 3, 1952–1958.

    Article  Google Scholar 

  13. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    Article  Google Scholar 

  14. Martins, T. B.; da Silva, A. J. R.; Miwa, R. H.; Fazzio, A. σ- and π-defects at graphene nanoribbon edges: Building spin filters. Nano Lett. 2008, 8, 2293–2298.

    Article  Google Scholar 

  15. Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: New York, 1995.

    Book  Google Scholar 

  16. Nitzan, A. Electron transmission through molecules and molecular interfaces. Ann. Rev. Phys. Chem. 2001, 52, 681–750.

    Article  Google Scholar 

  17. Visontai, D.; Grace, I. M.; Lambert, C. J. Electron transport through ribbonlike molecular wires calculated using densityfunctional theory and Green’s function formalism. Phys. Rev. B 2010, 81, 035409.

    Article  Google Scholar 

  18. Larade, B. J.; Taylor, J.; Zheng, Q. R.; Mehrez, H.; Pomorski, P.; Guo, H. Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys. Rev. B 2001, 64, 195402.

    Article  Google Scholar 

  19. Paulsson, M.; Brandbyge, M. Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 2007, 76, 115117.

    Article  Google Scholar 

  20. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  Google Scholar 

  21. Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

    Article  Google Scholar 

  22. Zhang, L. M.; Diao, S.; Nie, Y. F.; Yan, K.; Liu, N.; Dai, B. Y.; Xie, Q.; Reina, A.; Kong, J.; Liu, Z. F. Photocatalytic patterning and modification of graphene. J. Am. Chem. Soc. 2011, 133, 2706–2713.

    Article  Google Scholar 

  23. Martínez-Galera, A. J.; Brihuega, I.; Gutiérrez-Rubio, A.; Stauber, T.; Gómez-Rodríguez, J. M. Towards scalable nano-engineering of graphene. Sci. Rep. 2014, 4, 7314.

    Article  Google Scholar 

  24. Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

    Article  Google Scholar 

  25. Merino, P.; Švec, M.; Martinez, J. I.; Jelinek, P.; Lacovig, P.; Dalmiglio, M.; Lizzit, S.; Soukiassian, P.; Cernicharo, J.; Martin-Gago, J. A. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation. Nat. Commun. 2014, 5, 3054.

    Article  Google Scholar 

  26. Chen, Y.-C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

    Article  Google Scholar 

  27. Wang, H. T.; Wang, Q. X.; Cheng, Y. C.; Li, K.; Yao, Y. B.; Zhang, Q.; Dong, C. Z.; Wang, P.; Schwingenschlög, U.; Yang, W. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 2012, 12, 141–144.

    Article  Google Scholar 

  28. Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.

    Article  Google Scholar 

  29. Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319.

    Article  Google Scholar 

  30. Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A. P.; Jiang, Z. G.; Conrad, E. H.; Berger, C. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354.

    Article  Google Scholar 

  31. Lee, S.-K.; Jang, H. Y.; Jang, S.; Choi, E.; Hong, B. H.; Lee, J. C.; Park, S. H.; Ahn, J.-H. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 2012, 12, 3472–3476.

    Article  Google Scholar 

  32. Sun, D.-M.; Timmermans, M. Y.; Kaskela, A.; Nasibulin, A. G.; Kishimoto, S.; Mizutani, T.; Kauppinen, E. I.; Ohno, Y. Mouldable all-carbon integrated circuits. Nat. Commun. 2013, 4, 2302.

    Google Scholar 

  33. Qi, J. S.; Huang, J. Y.; Feng, J.; Shi, D. N.; Li, J. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap. ACS Nano 2011, 5, 3475–3482.

    Article  Google Scholar 

  34. Chen, W.; Yu, Y. Y.; Zheng, X. M.; Qin, S. Q.; Wang, F.; Fang, J. Y.; Wang, G.; Wang, C. C.; Wang, L.; Peng, G. et al. All-carbon based graphene field effect transistor with graphitic electrodes fabricated by e-beam direct writing on PMMA. Sci. Rep. 2015, 5, 12198.

    Article  Google Scholar 

  35. Solomon, G. C.; Andrews, D. Q.; Van Duyne, R. P.; Ratner, M. A. When things are not as they seem: Quantum interference turns molecular electron transfer “rules” upside down. J. Am. Chem. Soc. 2008, 130, 7788–7789.

    Article  Google Scholar 

  36. Reuter, M. G.; Seideman, T.; Ratner, M. A. Molecular conduction through adlayers: Cooperative effects can help or hamper electron transport. Nano Lett. 2011, 11, 4693–4696.

    Article  Google Scholar 

  37. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745–2779.

    Google Scholar 

  38. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

  39. Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqin Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, K., Fu, X., De Sarkar, A. et al. Dual response of graphene-based ultra-small molecular junctions to defect engineering. Nano Res. 9, 1480–1488 (2016). https://doi.org/10.1007/s12274-016-1044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1044-7

Keywords

Navigation