Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes

Abstract

Sub-micron color sensors are developed, using carbon nanotubes (CNTs). The color sensor consists of an array of two photodiodes with different spectral responses, fabricated using controlled electric peeling-off and doping-free techniques on a single semiconducting double-wall CNT. The CNT photodiodes exhibit intrinsic broad spectral responses from 640 to 2,100 nm, large linear dynamic ranges of over 60 dB, and sub-micron pixel size. This method explores the unique properties of multi-wall CNTs, and may be readily used for large-scale fabrication of high performance color sensor arrays, when arrays of parallel multi-wall CNTs become available.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Nozaki, H.; Adachi, T. Color sensor. U.S. Patent 4,677,289, Jun 30, 1987.

    Google Scholar 

  2. [2]

    Rutz, F.; Rehm, R.; Wörl, A.; Schmitz, J.; Wauro, M.; Niemasz, J.; Masur, M.; Walther, M.; Scheibner, R.; Ziegler, J. Imaging detection of CO2 using a bispectral type-II superlattice infrared camera. In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 2012, pp 1–7.

    Google Scholar 

  3. [3]

    Park, H.; Dan, Y. P.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014, 14, 1804–1809.

    Article  Google Scholar 

  4. [4]

    Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154.

    Article  Google Scholar 

  5. [5]

    Theuwissen, A. CMOS image sensors: State-of-the-art and future perspectives. In Proceedings of the 33rd European Solid State Circuits Conference, Munich, Germany, 2007, pp 21–27.

    Google Scholar 

  6. [6]

    Eid, E. S. Study of limitations on pixel size of very high resolution image sensors. In Proceedings of the 18th National Radio Science Conference, Mansoura, Egypt, 2001, pp 15–28.

    Google Scholar 

  7. [7]

    Farrell, J.; Xiao, F.; Kavusi, S. Resolution and light sensitivity tradeoff with pixel size. In Proceedings of the SPIE 6169, Digital Photography II, San Jose, CA, USA, 2006, pp 60690n–60690n–8.

    Google Scholar 

  8. [8]

    Baylet, J.; Gravrand, O.; Laffosse, E.; Vergnaud, C.; Ballerand, S.; Aventurier, B.; Deplanche, J. C.; Ballet, P.; Castelein, P.; Chamonal, J. P. et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J. Electron. Mater. 2004, 33, 690–700.

    Article  Google Scholar 

  9. [9]

    Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291–293.

    Article  Google Scholar 

  10. [10]

    Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268–1270.

    Article  Google Scholar 

  11. [11]

    Lai, K. W. C.; Xi, N.; Fung, C. K. M.; Chen, H. Z.; Tarn, T.-J. Engineering the band gap of carbon nanotube for infrared sensors. Appl. Phys. Lett. 2009, 95, 221107.

    Article  Google Scholar 

  12. [12]

    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

    Article  Google Scholar 

  13. [13]

    Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.

    Article  Google Scholar 

  14. [14]

    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.

    Article  Google Scholar 

  15. [15]

    Wen, Q.; Qian, W. Z.; Nie, J. Q.; Cao, A. Y.; Ning, G. Q.; Wang, Y.; Hu, L.; Zhang, Q.; Huang, J. Q.; Wei, F. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 2010, 22, 1867–1871.

    Article  Google Scholar 

  16. [16]

    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on schulz-flory distribution. ACS Nano 2013, 7, 6156–6161.

    Article  Google Scholar 

  17. [17]

    Wei, N.; Liu, Y.; Xie, H. H.; Wei, F.; Wang, S.; Peng, L.-M. Carbon nanotube light sensors with linear dynamic range of over 120 dB. Appl. Phys. Lett. 2014, 105, 073107.

    Article  Google Scholar 

  18. [18]

    Yu, D. M.; Wang, S.; Ye, L. H.; Li, W.; Zhang, Z. Y.; Chen, Y. B.; Zhang, J.; Peng, L.-M. Electroluminescence from serpentine carbon nanotube based light-emitting diodes on quartz. Small 2014, 10, 1050–1056.

    Article  Google Scholar 

  19. [19]

    Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238–245.

    Article  Google Scholar 

  20. [20]

    Bourlon, B.; Glattli, D. C.; Plaç ais, B.; Berroir, J. M.; Miko, C.; Forró, L.; Bachtold, A. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 026804-1–026804-4.

    Article  Google Scholar 

  21. [21]

    Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A 2002, 74, 329–332.

    Article  Google Scholar 

  22. [22]

    Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

    Article  Google Scholar 

  23. [23]

    Tsutsui, M.; Taninouchi, Y. K.; Kurokawa, S.; Sakai, A. Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 2006, 100, 094302.

    Article  Google Scholar 

  24. [24]

    Chiu, H.-Y.; Deshpande, V. V.; Postma, H. W. C.; Lau, C. N.; Mikó, C.; Forró, L.; Bockrath, M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 226101-1–226101-4.

    Article  Google Scholar 

  25. [25]

    Brown, E.; Hao, L.; Gallop, J. C.; MacFarlane, J. C. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 023107.

    Article  Google Scholar 

  26. [26]

    Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    Article  Google Scholar 

  27. [27]

    Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62–63.

    Article  Google Scholar 

  28. [28]

    Wang, S.; Liang, X. L.; Chen, Q.; Yao, K.; Peng, L.-M. High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon 2007, 45, 760–765.

    Article  Google Scholar 

  29. [29]

    Bouilly, D.; Cabana, J.; Meunier, F.; Desjardins-Carriere, M.; Lapointe, F.; Gagnon, P.; Larouche, F. L.; Adam, E.; Paillet, M.; Martel, R. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS Nano 2011, 5, 4927–4934.

    Article  Google Scholar 

  30. [30]

    Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakradhanula, V. S. K.; Kü bel, C.; Krupke, R.; Flavel, B. S. Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS Nano 2015, 9, 3849–3857.

    Article  Google Scholar 

  31. [31]

    Deborde, T.; Aspitarte, L.; Sharf, T.; Kevek, J. W.; Minot, E. D. Determining the chiral index of semiconducting carbon nanotubes using photoconductivity resonances. J. Phys. Chem. C 2014, 118, 9946–9950.

    Article  Google Scholar 

  32. [32]

    Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 2005, 5, 749–752.

    Article  Google Scholar 

  33. [33]

    Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067–1071.

    Article  Google Scholar 

  34. [34]

    Liu, K. H.; Jin, C. H.; Hong, X. P.; Kim, J.; Zettl, A.; Wang, E. G.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 2014, 10, 737–742.

    Google Scholar 

  35. [35]

    Tang, L.; Kocabas, S. E.; Latif, S.; Okyay, A. L.; Ly-Gagnon, D. S.; Saraswat, K. C.; Miller, D. A. B. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2008, 2, 226–229.

    Article  Google Scholar 

  36. [36]

    Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154.

    Article  Google Scholar 

  37. [37]

    Gabor, N. M. Extremely efficient and ultrafast: Electrons, holes, and their interactions in the carbon nanotube PN junction. Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 2012.

    Google Scholar 

  38. [38]

    Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.

    Article  Google Scholar 

  39. [39]

    Liang, S. B.; Zhang, Z. Y.; Pei, T.; Li, R. M.; Li, Y.; Peng, L. M. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 2013, 6, 535–545.

    Article  Google Scholar 

  40. [40]

    Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sheng Wang or Lianmao Peng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Huang, H., Liu, Y. et al. Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Res. 9, 1470–1479 (2016). https://doi.org/10.1007/s12274-016-1043-8

Download citation

Keywords

  • color sensors
  • carbon nanotubes
  • optoelectronic devices
  • barrier-free bipolar diodes