Nano Research

, Volume 9, Issue 5, pp 1470–1479 | Cite as

Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes

  • Nan Wei
  • Huixin Huang
  • Yang Liu
  • Leijing Yang
  • Fanglin Wang
  • Huanhuan Xie
  • Yingying Zhang
  • Fei Wei
  • Sheng WangEmail author
  • Lianmao PengEmail author
Research Article


Sub-micron color sensors are developed, using carbon nanotubes (CNTs). The color sensor consists of an array of two photodiodes with different spectral responses, fabricated using controlled electric peeling-off and doping-free techniques on a single semiconducting double-wall CNT. The CNT photodiodes exhibit intrinsic broad spectral responses from 640 to 2,100 nm, large linear dynamic ranges of over 60 dB, and sub-micron pixel size. This method explores the unique properties of multi-wall CNTs, and may be readily used for large-scale fabrication of high performance color sensor arrays, when arrays of parallel multi-wall CNTs become available.


color sensors carbon nanotubes optoelectronic devices barrier-free bipolar diodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_1043_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.26 MB.


  1. [1]
    Nozaki, H.; Adachi, T. Color sensor. U.S. Patent 4,677,289, Jun 30, 1987.Google Scholar
  2. [2]
    Rutz, F.; Rehm, R.; Wörl, A.; Schmitz, J.; Wauro, M.; Niemasz, J.; Masur, M.; Walther, M.; Scheibner, R.; Ziegler, J. Imaging detection of CO2 using a bispectral type-II superlattice infrared camera. In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 2012, pp 1–7.Google Scholar
  3. [3]
    Park, H.; Dan, Y. P.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014, 14, 1804–1809.CrossRefGoogle Scholar
  4. [4]
    Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154.CrossRefGoogle Scholar
  5. [5]
    Theuwissen, A. CMOS image sensors: State-of-the-art and future perspectives. In Proceedings of the 33rd European Solid State Circuits Conference, Munich, Germany, 2007, pp 21–27.Google Scholar
  6. [6]
    Eid, E. S. Study of limitations on pixel size of very high resolution image sensors. In Proceedings of the 18th National Radio Science Conference, Mansoura, Egypt, 2001, pp 15–28.Google Scholar
  7. [7]
    Farrell, J.; Xiao, F.; Kavusi, S. Resolution and light sensitivity tradeoff with pixel size. In Proceedings of the SPIE 6169, Digital Photography II, San Jose, CA, USA, 2006, pp 60690n–60690n–8.Google Scholar
  8. [8]
    Baylet, J.; Gravrand, O.; Laffosse, E.; Vergnaud, C.; Ballerand, S.; Aventurier, B.; Deplanche, J. C.; Ballet, P.; Castelein, P.; Chamonal, J. P. et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J. Electron. Mater. 2004, 33, 690–700.CrossRefGoogle Scholar
  9. [9]
    Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291–293.CrossRefGoogle Scholar
  10. [10]
    Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268–1270.CrossRefGoogle Scholar
  11. [11]
    Lai, K. W. C.; Xi, N.; Fung, C. K. M.; Chen, H. Z.; Tarn, T.-J. Engineering the band gap of carbon nanotube for infrared sensors. Appl. Phys. Lett. 2009, 95, 221107.CrossRefGoogle Scholar
  12. [12]
    Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.CrossRefGoogle Scholar
  13. [13]
    Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.CrossRefGoogle Scholar
  14. [14]
    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.CrossRefGoogle Scholar
  15. [15]
    Wen, Q.; Qian, W. Z.; Nie, J. Q.; Cao, A. Y.; Ning, G. Q.; Wang, Y.; Hu, L.; Zhang, Q.; Huang, J. Q.; Wei, F. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 2010, 22, 1867–1871.CrossRefGoogle Scholar
  16. [16]
    Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on schulz-flory distribution. ACS Nano 2013, 7, 6156–6161.CrossRefGoogle Scholar
  17. [17]
    Wei, N.; Liu, Y.; Xie, H. H.; Wei, F.; Wang, S.; Peng, L.-M. Carbon nanotube light sensors with linear dynamic range of over 120 dB. Appl. Phys. Lett. 2014, 105, 073107.CrossRefGoogle Scholar
  18. [18]
    Yu, D. M.; Wang, S.; Ye, L. H.; Li, W.; Zhang, Z. Y.; Chen, Y. B.; Zhang, J.; Peng, L.-M. Electroluminescence from serpentine carbon nanotube based light-emitting diodes on quartz. Small 2014, 10, 1050–1056.CrossRefGoogle Scholar
  19. [19]
    Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238–245.CrossRefGoogle Scholar
  20. [20]
    Bourlon, B.; Glattli, D. C.; Plaç ais, B.; Berroir, J. M.; Miko, C.; Forró, L.; Bachtold, A. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 026804-1–026804-4.CrossRefGoogle Scholar
  21. [21]
    Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A 2002, 74, 329–332.CrossRefGoogle Scholar
  22. [22]
    Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.CrossRefGoogle Scholar
  23. [23]
    Tsutsui, M.; Taninouchi, Y. K.; Kurokawa, S.; Sakai, A. Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 2006, 100, 094302.CrossRefGoogle Scholar
  24. [24]
    Chiu, H.-Y.; Deshpande, V. V.; Postma, H. W. C.; Lau, C. N.; Mikó, C.; Forró, L.; Bockrath, M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 226101-1–226101-4.CrossRefGoogle Scholar
  25. [25]
    Brown, E.; Hao, L.; Gallop, J. C.; MacFarlane, J. C. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 023107.CrossRefGoogle Scholar
  26. [26]
    Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.CrossRefGoogle Scholar
  27. [27]
    Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62–63.CrossRefGoogle Scholar
  28. [28]
    Wang, S.; Liang, X. L.; Chen, Q.; Yao, K.; Peng, L.-M. High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon 2007, 45, 760–765.CrossRefGoogle Scholar
  29. [29]
    Bouilly, D.; Cabana, J.; Meunier, F.; Desjardins-Carriere, M.; Lapointe, F.; Gagnon, P.; Larouche, F. L.; Adam, E.; Paillet, M.; Martel, R. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS Nano 2011, 5, 4927–4934.CrossRefGoogle Scholar
  30. [30]
    Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakradhanula, V. S. K.; Kü bel, C.; Krupke, R.; Flavel, B. S. Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS Nano 2015, 9, 3849–3857.CrossRefGoogle Scholar
  31. [31]
    Deborde, T.; Aspitarte, L.; Sharf, T.; Kevek, J. W.; Minot, E. D. Determining the chiral index of semiconducting carbon nanotubes using photoconductivity resonances. J. Phys. Chem. C 2014, 118, 9946–9950.CrossRefGoogle Scholar
  32. [32]
    Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 2005, 5, 749–752.CrossRefGoogle Scholar
  33. [33]
    Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067–1071.CrossRefGoogle Scholar
  34. [34]
    Liu, K. H.; Jin, C. H.; Hong, X. P.; Kim, J.; Zettl, A.; Wang, E. G.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 2014, 10, 737–742.Google Scholar
  35. [35]
    Tang, L.; Kocabas, S. E.; Latif, S.; Okyay, A. L.; Ly-Gagnon, D. S.; Saraswat, K. C.; Miller, D. A. B. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2008, 2, 226–229.CrossRefGoogle Scholar
  36. [36]
    Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154.CrossRefGoogle Scholar
  37. [37]
    Gabor, N. M. Extremely efficient and ultrafast: Electrons, holes, and their interactions in the carbon nanotube PN junction. Ph.D. Dissertation, Cornell University, Ithaca, New York, USA, 2012.Google Scholar
  38. [38]
    Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.CrossRefGoogle Scholar
  39. [39]
    Liang, S. B.; Zhang, Z. Y.; Pei, T.; Li, R. M.; Li, Y.; Peng, L. M. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 2013, 6, 535–545.CrossRefGoogle Scholar
  40. [40]
    Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nan Wei
    • 1
  • Huixin Huang
    • 1
    • 2
  • Yang Liu
    • 1
    • 2
  • Leijing Yang
    • 1
  • Fanglin Wang
    • 1
  • Huanhuan Xie
    • 3
  • Yingying Zhang
    • 3
  • Fei Wei
    • 3
  • Sheng Wang
    • 1
    Email author
  • Lianmao Peng
    • 1
    Email author
  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  3. 3.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations