Skip to main content
Log in

Chemical routes toward long-lasting lithium/sulfur cells

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium/sulfur (Li/S) cells have great potential to become mainstream secondary batteries due to their ultra-high theoretical specific energy. The major challenge for Li/S cells is the unstable cycling performance caused by the sulfur’s insulating nature and the high-solubility of the intermediate polysulfide products. Several years of efforts to develop various fancy carbon nanostructures, trying to physically encapsulate the polysulfides, did not yet push the cell’s cycle life long enough to compete with current Li ion cells. The focus of this review is on the recent progress in chemical bonding strategy for trapping polysulfides through employing functional groups and additives in carbon matrix. Research results on understanding the working mechanism of chemical interaction between polysulfides and functional groups (e.g. O–, B–, N–and S–) in carbon matrix, metal-based additives, or polymer additives during charge/discharge are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J. A. A realizable renewable energy future. Science 1999, 285, 687–689.

    Article  Google Scholar 

  2. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

    Article  Google Scholar 

  3. Li, N.; Weng, Z.; Wang, Y.; Li, F.; Cheng, H. M.; Zhou, H. An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy Environ. Sci. 2014, 7, 3307–3312.

    Article  Google Scholar 

  4. Zhang, S.; Liu, M. N.; Ma, F.; Ye, F. M.; Li, H. F.; Zhang, X. Y.; Hou, Y.; Qiu, Y. C.; Li, W. F.; Wang, J. et al. A high energy density Li2S@C nanocomposite cathode with a nitrogen-doped carbon nanotube top current collector. J. Mater. Chem. A 2015, 3, 18913–18919.

    Article  Google Scholar 

  5. Xu, J.; Shui, J.; Wang, J.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries. ACS Nano 2014, 8, 10920–10930.

    Article  Google Scholar 

  6. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  7. Nan, C. Y.; Lin, Z.; Liao, H. G.; Song, M. K.; Li, Y. D.; Cairns, E. J. Durable carbon-coated Li2S core–shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 2014, 136, 4659–4663.

    Article  Google Scholar 

  8. Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 2013, 25, 6547–6553.

    Article  Google Scholar 

  9. Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 9592–9595.

    Article  Google Scholar 

  10. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv. Mater. 2011, 23, 5641–5644.

    Article  Google Scholar 

  11. Li, H. F.; Yang, X. W.; Wang, X. M.; Liu, M. N.; Ye, F. M.; Wang, J.; Qiu, Y. C.; Li, W. F.; Zhang, Y. G. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 2015, 12, 468–475.

    Article  Google Scholar 

  12. Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.

    Article  Google Scholar 

  13. Ye, F. M.; Hou, Y.; Liu, M. N.; Li, W. F.; Yang, X. W.; Qiu, Y. C.; Zhou, L. S.; Li, H. F.; Xu, Y. J.; Zhang, Y. G. Fabrication of mesoporous Li2S–C nanofibers for high performance Li/Li2S cell cathodes. Nanoscale 2015, 7, 9472–9476.

    Article  Google Scholar 

  14. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

    Article  Google Scholar 

  15. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  Google Scholar 

  16. Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  Google Scholar 

  17. Yang, C. P.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: Amodel system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.

    Article  Google Scholar 

  18. Li, L.; Ruan, G.; Peng, Z.; Yang, Y.; Fei, H.; Raji, A. R. O.; Samuel, E. L. G.; Tour, J. M. Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes. ACS Appl. Mater. Interfaces 2014, 6, 15033–15039.

    Google Scholar 

  19. Zheng, S. Y.; Yi, F.; Li, Z. P.; Zhu, Y. J.; Xu, Y. H.; Luo, C.; Yang, J. H.; Wang, C. S. Copper-stabilized sulfur–microporous carbon cathodes for Li–S batteries. Adv. Funct. Mater. 2014, 24, 4156–4163.

    Article  Google Scholar 

  20. Xiao, L. F.; Cao, Y. L.; Xiao, J.; Schwezer, B.; Engelhard, M. H.; Saraf, L. V.; Nie, Z. M.; Exarhos, G. J.; Liu, J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv. Mater. 2012, 24, 1176–1181.

    Article  Google Scholar 

  21. Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

    Article  Google Scholar 

  22. Qiu, Y. C.; Rong, G. L.; Yang, J.; Li, G. Z.; Ma, S.; Wang, X. L.; Pan, Z. H.; Hou, Y.; Liu, M. N.; Ye, F. M. et al. Highly nitridated graphene–Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 2015, 5, 1501369.

  23. Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Gerey, G.; Tarascon, J. M. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 2011, 133, 16154–16160.

    Article  Google Scholar 

  24. Evers, S.; Yim, T.; Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C 2012, 116, 19653–19658.

    Article  Google Scholar 

  25. Chung, S. H.; Manthiram, A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium–sulfur battery cells. ChemSusChem 2014, 7, 1655–1661.

    Article  Google Scholar 

  26. Song, M. K.; Zhang, Y. G.; Cairns, E. J. A long-life, high-rate lithium/sulfur cell: Amultifaceted approach to enhancing cell performance. Nano Lett. 2013, 13, 5891–5899.

    Article  Google Scholar 

  27. Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wie, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

    Article  Google Scholar 

  28. Manthiram, A.; Fu, Y.Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  Google Scholar 

  29. Song, M. K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186–2204.

    Article  Google Scholar 

  30. Kim, H.; Lee, J. T.; Lee, D. C.; Magasinski, A.; Cho, W.; Yushin, G. Plasma-enhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithium–sulfur batteries. Adv. Energy Mater. 2013, 3, 1308–1315.

    Article  Google Scholar 

  31. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  32. Fronczek, D. N.; Bessler, W. G. Insight into lithium–sulfur batteries: Elementary kinetic modeling and impedance simulation. J. Power Source 2013, 244, 183–188.

    Article  Google Scholar 

  33. Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930–6935.

    Article  Google Scholar 

  34. Chung, S. H.; Singhal, R.; Kalra, V.; Manthiram, A. Porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li–S cells. J. Phys. Chem. Lett. 2015, 6, 2163–2169.

    Article  Google Scholar 

  35. Su, Y. S.; Fu, Y. Z.; Guo, B. K.; Dai, S.; Manthiram, A. Fast, reversible lithium storage with a sulfur/long-chainpolysulfide redox couple. Chem.—Eur. J. 2013, 19, 8621–8626.

    Article  Google Scholar 

  36. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 2015, 5, 1500408.

    Google Scholar 

  37. Zhang, S. G.; Ueno, K.; Dokko, K.; Watanabe M. Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 2015, 5, 1500117.

    Google Scholar 

  38. Evers, S.; Nazar, L. F. New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

    Article  Google Scholar 

  39. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    Article  Google Scholar 

  40. Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.

    Article  Google Scholar 

  41. Zhou, W. D.; Yu, Y. C.; Chen, H.; Disalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

    Article  Google Scholar 

  42. Barchasz, C.; Lepretre, J. C.; Alloin, F.; Patoux, S. New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Sources 2012, 199, 322–330.

    Article  Google Scholar 

  43. Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium–sulfur batteries. Nano Res. 2012, 5, 726–738.

    Article  Google Scholar 

  44. Zhao, C. Y.; Liu, L. J.; Zhao, H. L.; Krall, A.; Wen, Z. H.; Chen, J. H.; Hurley, P.; Jiang, J. W.; Li, Y. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium–sulfur batteries. Nanoscale 2014, 6, 882–888.

    Article  Google Scholar 

  45. Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.

    Google Scholar 

  46. Chung, S. H.; Manthiram, A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299–5306.

    Article  Google Scholar 

  47. Chung, S. H.; Manthiram, A. High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 2014, 5, 1978–1983.

    Article  Google Scholar 

  48. Chung, S. H.; Manthiram, A. A polyethylene glycolsupported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.

    Article  Google Scholar 

  49. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  50. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969?A1976.

  51. Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian, W. Z.; Wie, F. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 2014, 7, 347–353.

    Article  Google Scholar 

  52. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 2015, 6, 5682.

    Article  Google Scholar 

  53. Oschatz, M.; Borchardt, L.; Pinkert, K.; Thieme, S.; Lohe, M. R.; Hoffmann, C.; Benusch, M.; Wisser, F. M.; Ziegler, C.; Giebeler, L. et al. Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material. Adv. Energy Mater. 2014, 4, 1300645.

    Article  Google Scholar 

  54. Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.

    Article  Google Scholar 

  55. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

    Article  Google Scholar 

  56. He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 2013, 7, 10920–10930.

    Article  Google Scholar 

  57. Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv. Mater. 2015, 27, 641–647.

    Article  Google Scholar 

  58. Chen, H. W.; Dong, W. L.; Ge, J.; Wang, C. H.; Wu, X. D.; Lu, W.; Chen, L. W. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci. Rep. 2013, 3, 1910.

    Google Scholar 

  59. Chen, Y. M.; Li, X. Y.; Park, K. S.; Hong, J. H.; Song, J.; Zhou, L. M.; Mai, Y. W.; Huang, H. T.; Goodenough, J. B. Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 10126–10130.

    Article  Google Scholar 

  60. Zhang, L.; Ji, L. W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo, J. H. Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Phys. Chem. Chem. Phys. 2012, 14, 13670–13675.

    Article  Google Scholar 

  61. Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375.

    Article  Google Scholar 

  62. Feng, X. F.; Song, M. K.; Stolte, W. C.; Gardenghi, D.; Zhang, D.; Sun, X. H.; Zhu, J. F.; Cairns, E. J.; Guo, J. H. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: A comprehensive study of the sulfur–graphene oxide cathode after discharge–charge cycling. Phys. Chem. Chem. Phys. 2014, 16, 16931–16940.

    Article  Google Scholar 

  63. Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.

    Article  Google Scholar 

  64. Seh, Z. W.; Wang, H. T.; Hsu, P. C.; Zhang, Q. F.; Li, W. Y.; Zheng, G. Y.; Yao, H. B.; Cui, Y. Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 2014, 7, 672–676.

    Article  Google Scholar 

  65. Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogendoped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

    Article  Google Scholar 

  66. Guo, J. C.; Yang, Z. C.; Yu, Y. C.; Abruña, H. D.; Archer, L. A. Lithium–sulfur battery cathode enabled by lithium–nitrile interaction. J. Am. Chem. Soc. 2013, 135, 763–767.

    Article  Google Scholar 

  67. Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325–4329.

    Article  Google Scholar 

  68. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium–sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.

    Article  Google Scholar 

  69. Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

    Article  Google Scholar 

  70. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Longlife Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphurcodoped graphene sponge. Nat. Commun. 2015, 6, 7760.

    Article  Google Scholar 

  71. Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat. Commun. 2013, 4, 1331.

  72. Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

  73. Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

    Article  Google Scholar 

  74. Pang, Q.; Kundu, D.; Cuisinier, M.; Naza, L. F. Surfaceenhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 2015, 5, 4759.

    Article  Google Scholar 

  75. Song, M. S.; Han, S. C.; Kim, H. S.; Kim, J. H.; Kim, K. T.; Kang, Y. M.; Ahn, H. J.; Dou, S. X.; Lee, J. Y. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 2004, 151, A791–A795.

    Article  Google Scholar 

  76. Zhang, Y. G.; Zhao, Y.; Yermukhambetova, A.; Bakenov, Z.; Chen, P. J. Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J. Mater. Chem. A 2013, 1, 295–301.

    Article  Google Scholar 

  77. Choi, Y. J.; Jung, B. S.; Lee, D. J.; Kim, K. W.; Ahn, H. J.; Cho, K. K.; Gu, H. B. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scr. 2007, T129, 62.

    Article  Google Scholar 

  78. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

    Article  Google Scholar 

  79. Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.

    Article  Google Scholar 

  80. Sun, F. G.; Wang, J. T.; Long, D. H.; Qiao, W. M.; Ling, L. C.; Lv, C. X.; Cai, R. A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J. Mater. Chem. A 2013, 1, 13283–13289.

    Article  Google Scholar 

  81. Qu, Q. T.; Gao, T.; Zheng, H. Y.; Wang, Y.; Li, X. Y.; Li, X. X.; Chen, J. M.; Han, Y. Y.; Shao, J.; Zheng, H. Z. Strong surface-bound sulfur in conductive MoO2 matrix for enhancing Li–S battery performance. Adv. Mater. Interfaces 2015, 2, 1500048.

    Article  Google Scholar 

  82. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    Article  Google Scholar 

  83. Zhang, Q. F.; Wang, Y. F.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of twodimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

    Article  Google Scholar 

  84. Gu, M. S.; Lee, J.; Kim, Y.; Kim, J. S.; Jang, B. Y.; Lee, K. T.; Kim, B. S. Inhibiting the shuttle effect in lithium–sulfur batteries using a layer-by-layer assembled ion-permselective separator. RSC Adv. 2014, 4, 46940–46946.

    Article  Google Scholar 

  85. She, Z. W.; Zhang, Q. F.; Li, W. Y.; Zheng, G. Y.; Yao, H. B.; Cui, Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 2013, 4, 3673–3677.

    Article  Google Scholar 

  86. Park, K.; Cho, J. H.; Jang, J. H.; Yu, B. C.; De La Hoz, A. T.; Miller, K. M.; Ellison, C. J.; Goodenough, J. B. Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 2015, 8, 2389–2395.

    Article  Google Scholar 

  87. Chen, H. W.; Wang, C. H.; Dai, Y. F.; Qiu, S. Q.; Yang, J. L.; Lu, W.; Chen, L. W. Rational design of cathode structure for high rate performance lithium-sulfur batteries. Nano Lett. 2015, 15, 5443–5448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuegang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ye, F., Li, W. et al. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 9, 94–116 (2016). https://doi.org/10.1007/s12274-016-1027-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1027-8

Keywords

Navigation