Mass transport phenomena in copper nanowires at high current density

Abstract

Electromigration in Cu has been extensively investigated as the root cause of typical breakdown failure in Cu interconnects. In this study, Cu nanowires connected to Au electrodes are fabricated and observed using in situ transmission electron microscopy to investigate the electro- and thermo-migration processes that are induced by direct current sweeps. We observe the dynamic evolution of different mass transport mechanisms. A current density on the order of 106 A/cm2 and a temperature of approximately 400 °C are sufficient to induce electro- and thermo-migration, respectively. Observations of the migration processes activated by increasing temperatures indicate that the migration direction of Cu atoms is dependent on the net force from the electric field and electron wind. This work is expected to support future design efforts to improve the robustness of Cu interconnects.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Murarka, S. P.; Gutmann, R. J.; Kaloyeros, A. E.; Lanford, W. A. Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films 1993, 236, 257–266.

    Article  Google Scholar 

  2. [2]

    Murarka, S. P. Low dielectric constant materials for interlayer dielectric applications. Solid State Technol. 1996, 39, 83–90.

    Article  Google Scholar 

  3. [3]

    Arnaud, L.; Berger, T.; Reimbold, G. Evidence of grainboundary versus interface diffusion in electromigration experiments in copper damascene interconnects. J. Appl. Phys. 2003, 93, 192–204.

    Article  Google Scholar 

  4. [4]

    Liniger, E. G.; Hu, C. K.; Gignac, L. M.; Simon, A. Effect of liner thickness on electromigration lifetime. J. Appl. Phys. 2003, 93, 9576–9582.

    Article  Google Scholar 

  5. [5]

    Hu, C. K.; Rosenberg, R.; Lee, K. Y. Electromigration path in Cu thin-film lines. Appl. Phys. Lett. 1999, 74, 2945–2947.

    Article  Google Scholar 

  6. [6]

    Hau-Riege, C. S. An introduction to Cu electromigration. Microelectron. Reliab. 2004, 44, 195–205.

    Article  Google Scholar 

  7. [7]

    Huntington, H. B.; Grone, A. R. Current-induced marker motion in gold wires. J. Phys. Chem. Solids 1961, 20, 76–87.

    Article  Google Scholar 

  8. [8]

    Blech, I. A. Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 1976, 47, 1203–1208.

    Article  Google Scholar 

  9. [9]

    Nah, J. W.; Paik, K. W.; Suh, J. O.; Tu, K. N. Mechanism of electromigration-induced failure in the 97Pb–3Sn and 37Pb–63Sn composite solder joints. J. Appl. Phys. 2003, 94, 7560–7566.

    Article  Google Scholar 

  10. [10]

    Liao, C. N.; Chen, K. C.; Wu, W. W.; Chen, L. J. In situ transmission electron microscope observations of electromigration in copper lines at room temperature. Appl. Phys. Lett. 2005, 87, 141903.

    Article  Google Scholar 

  11. [11]

    Chen, K. C.; Liao, C. N.; Wu, W. W.; Chen, L. J. Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 2007, 90, 203101.

    Article  Google Scholar 

  12. [12]

    Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321, 1066–1069.

    Article  Google Scholar 

  13. [13]

    Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.

    Article  Google Scholar 

  14. [14]

    Huang, Y. T.; Yu, S. Y.; Hsin, C. L.; Huang, C. W.; Kang, C. F.; Chu, F. H.; Chen, J. Y.; Hu, J. C.; Chen, L. T.; He, J. H. et al. In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. Anal. Chem. 2013, 85, 3955–3960.

    Article  Google Scholar 

  15. [15]

    Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Wu, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Lett. 2014, 14, 2759–2763.

    Article  Google Scholar 

  16. [16]

    Huang, Y. L.; Huang, C. W.; Chen, J. Y.; Ting, Y. H.; Lu, K. C.; Chueh, Y. L.; Wu, W. W. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory. ACS Nano 2014, 8, 9457–9462.

    Article  Google Scholar 

  17. [17]

    Tu, K. N. Electronic thin-film reliability; Cambridge University Press: Cambridge, 2010.

    Google Scholar 

  18. [18]

    Huntington, H. B. 6 - Electromigration in metals. In Diffusion in Solids; Burton, A. S. N. J., Ed.; Academic Press: New York, 1975; pp 303–352.

    Google Scholar 

  19. [19]

    Kohn, W.; Rostoker, N. Solution of the schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 1954, 94, 1111–1120.

    Article  Google Scholar 

  20. [20]

    Dekker, J. P.; Lodder, A. Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals. J. Appl. Phys. 1998, 84, 1958–1962.

    Article  Google Scholar 

  21. [21]

    Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.

    Google Scholar 

  22. [22]

    Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.

    Article  Google Scholar 

  23. [23]

    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Wei Wu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, YT., Huang, CW., Chen, JY. et al. Mass transport phenomena in copper nanowires at high current density. Nano Res. 9, 1071–1078 (2016). https://doi.org/10.1007/s12274-016-0998-9

Download citation

Keywords

  • Cu interconnect
  • nanowires
  • electromigration
  • thermomigration
  • mass transport
  • high current density