Nano Research

, Volume 9, Issue 4, pp 1071–1078 | Cite as

Mass transport phenomena in copper nanowires at high current density

  • Yu-Ting Huang
  • Chun-Wei Huang
  • Jui-Yuan Chen
  • Yi-Hsin Ting
  • Shao-Liang Cheng
  • Chien-Neng Liao
  • Wen-Wei Wu
Research Article


Electromigration in Cu has been extensively investigated as the root cause of typical breakdown failure in Cu interconnects. In this study, Cu nanowires connected to Au electrodes are fabricated and observed using in situ transmission electron microscopy to investigate the electro- and thermo-migration processes that are induced by direct current sweeps. We observe the dynamic evolution of different mass transport mechanisms. A current density on the order of 106 A/cm2 and a temperature of approximately 400 °C are sufficient to induce electro- and thermo-migration, respectively. Observations of the migration processes activated by increasing temperatures indicate that the migration direction of Cu atoms is dependent on the net force from the electric field and electron wind. This work is expected to support future design efforts to improve the robustness of Cu interconnects.


Cu interconnect nanowires electromigration thermomigration mass transport high current density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_998_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.31 MB.
12274_2016_998_MOESM2_ESM.avi (3.7 mb)
Supplementary material, approximately 3.73 MB.
12274_2016_998_MOESM3_ESM.avi (2.1 mb)
Supplementary material, approximately 2.11 MB.
12274_2016_998_MOESM4_ESM.avi (257 kb)
Supplementary material, approximately 260 KB.


  1. [1]
    Murarka, S. P.; Gutmann, R. J.; Kaloyeros, A. E.; Lanford, W. A. Advanced multilayer metallization schemes with copper as interconnection metal. Thin Solid Films 1993, 236, 257–266.CrossRefGoogle Scholar
  2. [2]
    Murarka, S. P. Low dielectric constant materials for interlayer dielectric applications. Solid State Technol. 1996, 39, 83–90.CrossRefGoogle Scholar
  3. [3]
    Arnaud, L.; Berger, T.; Reimbold, G. Evidence of grainboundary versus interface diffusion in electromigration experiments in copper damascene interconnects. J. Appl. Phys. 2003, 93, 192–204.CrossRefGoogle Scholar
  4. [4]
    Liniger, E. G.; Hu, C. K.; Gignac, L. M.; Simon, A. Effect of liner thickness on electromigration lifetime. J. Appl. Phys. 2003, 93, 9576–9582.CrossRefGoogle Scholar
  5. [5]
    Hu, C. K.; Rosenberg, R.; Lee, K. Y. Electromigration path in Cu thin-film lines. Appl. Phys. Lett. 1999, 74, 2945–2947.CrossRefGoogle Scholar
  6. [6]
    Hau-Riege, C. S. An introduction to Cu electromigration. Microelectron. Reliab. 2004, 44, 195–205.CrossRefGoogle Scholar
  7. [7]
    Huntington, H. B.; Grone, A. R. Current-induced marker motion in gold wires. J. Phys. Chem. Solids 1961, 20, 76–87.CrossRefGoogle Scholar
  8. [8]
    Blech, I. A. Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 1976, 47, 1203–1208.CrossRefGoogle Scholar
  9. [9]
    Nah, J. W.; Paik, K. W.; Suh, J. O.; Tu, K. N. Mechanism of electromigration-induced failure in the 97Pb–3Sn and 37Pb–63Sn composite solder joints. J. Appl. Phys. 2003, 94, 7560–7566.CrossRefGoogle Scholar
  10. [10]
    Liao, C. N.; Chen, K. C.; Wu, W. W.; Chen, L. J. In situ transmission electron microscope observations of electromigration in copper lines at room temperature. Appl. Phys. Lett. 2005, 87, 141903.CrossRefGoogle Scholar
  11. [11]
    Chen, K. C.; Liao, C. N.; Wu, W. W.; Chen, L. J. Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 2007, 90, 203101.CrossRefGoogle Scholar
  12. [12]
    Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321, 1066–1069.CrossRefGoogle Scholar
  13. [13]
    Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.CrossRefGoogle Scholar
  14. [14]
    Huang, Y. T.; Yu, S. Y.; Hsin, C. L.; Huang, C. W.; Kang, C. F.; Chu, F. H.; Chen, J. Y.; Hu, J. C.; Chen, L. T.; He, J. H. et al. In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. Anal. Chem. 2013, 85, 3955–3960.CrossRefGoogle Scholar
  15. [15]
    Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Wu, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Lett. 2014, 14, 2759–2763.CrossRefGoogle Scholar
  16. [16]
    Huang, Y. L.; Huang, C. W.; Chen, J. Y.; Ting, Y. H.; Lu, K. C.; Chueh, Y. L.; Wu, W. W. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory. ACS Nano 2014, 8, 9457–9462.CrossRefGoogle Scholar
  17. [17]
    Tu, K. N. Electronic thin-film reliability; Cambridge University Press: Cambridge, 2010.CrossRefGoogle Scholar
  18. [18]
    Huntington, H. B. 6 - Electromigration in metals. In Diffusion in Solids; Burton, A. S. N. J., Ed.; Academic Press: New York, 1975; pp 303–352.Google Scholar
  19. [19]
    Kohn, W.; Rostoker, N. Solution of the schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 1954, 94, 1111–1120.CrossRefGoogle Scholar
  20. [20]
    Dekker, J. P.; Lodder, A. Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals. J. Appl. Phys. 1998, 84, 1958–1962.CrossRefGoogle Scholar
  21. [21]
    Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.Google Scholar
  22. [22]
    Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.CrossRefGoogle Scholar
  23. [23]
    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yu-Ting Huang
    • 1
  • Chun-Wei Huang
    • 1
  • Jui-Yuan Chen
    • 1
  • Yi-Hsin Ting
    • 1
  • Shao-Liang Cheng
    • 2
  • Chien-Neng Liao
    • 3
  • Wen-Wei Wu
    • 1
  1. 1.Department of Materials Science and EngineeringChiao Tung UniversityHsinchuChina
  2. 2.Department of Chemical and Materials EngineeringCentral UniversityTaoyuanChina
  3. 3.Department of Materials Science and EngineeringTsing Hua UniversityHsinchuChina

Personalised recommendations