Feynman, R. P. There's plenty of room at the bottom. Eng. Sci.
1960, 23, 22–36.
Google Scholar
Bao, C. C.; Chen, L.; Wang, T.; Lei, C.; Tian, F. R.; Cui, D. X.; Zhou, Y. One step quick detection of cancer cell surface marker by integrated nife-based magnetic biosensing cell cultural chip. Nano-Micro Lett.
2013, 5, 213–222.
Article
Google Scholar
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer
2005, 5, 161–171.
Article
Google Scholar
Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer
2011, 12, 39–50.
Article
Google Scholar
Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv.
2011, 2012, Article ID 751075.
Google Scholar
Lee, J.-H.; Huh, Y.-M.; Jun, Y.-W.; Seo, J.-W.; Jang, J.-T.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S. Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging. Nat. Med.
2007, 13, 95–99.
Article
Google Scholar
Pelaz, B.; Grazu, V.; Ibarra, A.; Magen, C.; del Pino, P.; de la Fuente, J. M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir
2012, 28, 8965–8970.
Article
Google Scholar
Ambrosone, A.; del Pino, P.; Marchesano, V.; Parak, W. J.; de la Fuente, J. M.; Tortiglione, C. Gold nanoprisms for photothermal cell ablation in vivo. Nanomedicine
2014, 9, 1913–1922.
Article
Google Scholar
Bao, C. C.; Beziere, N.; del Pino, P.; Pelaz, B.; Estrada, G.; Tian, F. R.; Ntziachristos, V.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small
2013, 9, 68–74.
Article
Google Scholar
Conde, J.; Rosa, J.; Lima, J. C.; Baptista, P. V. Nanophotonics for molecular diagnostics and therapy applications. Int. J. Photoenergy
2012, 2012, Article ID 619530.
Google Scholar
Yang, X. M.; Skrabalak, S. E.; Li, Z.-Y.; Xia, Y. N.; Wang, L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett.
2007, 7, 3798–3802.
Article
Google Scholar
Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett.
2007, 7, 1914–1918.
Article
Google Scholar
Song, K. H.; Kim, C.; Maslov, K.; Wang, L. V. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur. J. Radiol.
2009, 70, 227–231.
Article
Google Scholar
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol./Hematol.
2002, 43, 33–56.
Article
Google Scholar
Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc.
2006, 128, 2115–2120.
Article
Google Scholar
Han, J. S.; Zhang, J. J.; Yang, M.; Cui, D. X.; de la Fuente, J. M. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy. Nanoscale
2016, 8, 492–499.
Article
Google Scholar
Cui, D.; Jin, G.; Gao, T. W.; Sun, T.; Tian, F.; Estrada, G. G.; Gao, H.; Sarai, A. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol. Biomarkers Prev.
2004, 13, 1136–1145.
Google Scholar
Chen, X. Y. Multimodality imaging of tumor integrin avβ3 expression. Mini Rev. Med. Chem.
2006, 6, 227–234.
Article
Google Scholar
Montet, X.; Montet-Abou, K.; Reynolds, F.; Weissleder, R.; Josephson, L. Nanoparticle imaging of integrins on tumor cells. Neoplasia
2006, 8, 214–222.
Article
Google Scholar
Li, Z.; Huang, P.; Zhang, X.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q.; Cui, D. RGD-conjugated dendrimermodified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm.
2009, 7, 94–104.
Article
Google Scholar
Wang, K.; Ruan, J.; Qian, Q. R.; Song, H.; Bao, C. C.; Zhang, X. Q.; Kong, Y. F.; Zhang, C. L.; Hu, G. H.; Ni, J. et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnology
2011, 9, 23.
Article
Google Scholar
Li, C.; Ji, Y.; Wang, C.; Liang, S. J.; Pan, F.; Zhang, C. L.; Chen, F.; Fu, H. L.; Wang, K.; Cui, D. X. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res. Lett.
2014, 9, 244.
Article
Google Scholar
Nie, L. M.; Wang, S. J.; Wang, X. Y.; Rong, P. F.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small
2014, 10, 1585–1593.
Article
Google Scholar
Shi, J.; Wei, P.-K.; Zhang, S.; Qin, Z.-F.; Li, J.; Sun, D.-Z.; Xiao, Y.; Yu, Z.-H.; Lin, H.-M.; Zheng, G.-J. et al. OB glue paste technique for establishing nude mouse human gastric cancer orthotopic transplantation models. World J. Gastroenterol.
2008, 14, 4800–4804.
Article
Google Scholar
Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.
2007, 129, 7661–7665.
Article
Google Scholar
von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res.
2009, 69, 3892–3900.
Article
Google Scholar