Skip to main content

Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia

Abstract

The development of high-resolution nanosized photoacoustic contrast agents is an exciting yet challenging technological advance. Herein, antibody (breast cancer-associated antigen 1 (Brcaa1) monoclonal antibody)- and peptide (RGD)-functionalized gold nanoprisms (AuNprs) were used as a combinatorial methodology for in situ photoacoustic imaging, angiography, and localized hyperthermia using orthotopic and subcutaneous murine gastric carcinoma models. RGD-conjugated PEGylated AuNprs are available for tumor angiography, and Brcaa1 monoclonal antibody-conjugated PEGylated AuNprs are used for targeting and for in situ imaging of gastric carcinoma in orthotopic tumor models. In situ photoacoustic imaging allowed for anatomical and functional imaging at the tumor site. In vivo tumor angiography imaging showed enhancement of the photoacoustic signal in a time-dependent manner. Furthermore, photoacoustic imaging demonstrated that tumor vessels were clearly damaged after localized hyperthermia. This is the first proof-of-concept using two AuNprs probes as highly sensitive contrasts and therapeutic agents for in situ tumor detection and inhibition. These smart antibody/peptide AuNprs can be used as an efficient nanotheranostic platform for in vivo tumor detection with high sensitivity, as well as for tumor targeting therapy, which, with a single-dose injection, results in tumor size reduction and increases mice survival after localized hyperthermia treatment.

This is a preview of subscription content, access via your institution.

References

  1. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36.

    Google Scholar 

  2. Bao, C. C.; Chen, L.; Wang, T.; Lei, C.; Tian, F. R.; Cui, D. X.; Zhou, Y. One step quick detection of cancer cell surface marker by integrated nife-based magnetic biosensing cell cultural chip. Nano-Micro Lett. 2013, 5, 213–222.

    Article  Google Scholar 

  3. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.

    Article  Google Scholar 

  4. Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2011, 12, 39–50.

    Article  Google Scholar 

  5. Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2011, 2012, Article ID 751075.

    Google Scholar 

  6. Lee, J.-H.; Huh, Y.-M.; Jun, Y.-W.; Seo, J.-W.; Jang, J.-T.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S. Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

    Article  Google Scholar 

  7. Pelaz, B.; Grazu, V.; Ibarra, A.; Magen, C.; del Pino, P.; de la Fuente, J. M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir 2012, 28, 8965–8970.

    Article  Google Scholar 

  8. Ambrosone, A.; del Pino, P.; Marchesano, V.; Parak, W. J.; de la Fuente, J. M.; Tortiglione, C. Gold nanoprisms for photothermal cell ablation in vivo. Nanomedicine 2014, 9, 1913–1922.

    Article  Google Scholar 

  9. Bao, C. C.; Beziere, N.; del Pino, P.; Pelaz, B.; Estrada, G.; Tian, F. R.; Ntziachristos, V.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 2013, 9, 68–74.

    Article  Google Scholar 

  10. Conde, J.; Rosa, J.; Lima, J. C.; Baptista, P. V. Nanophotonics for molecular diagnostics and therapy applications. Int. J. Photoenergy 2012, 2012, Article ID 619530.

    Google Scholar 

  11. Yang, X. M.; Skrabalak, S. E.; Li, Z.-Y.; Xia, Y. N.; Wang, L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett. 2007, 7, 3798–3802.

    Article  Google Scholar 

  12. Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914–1918.

    Article  Google Scholar 

  13. Song, K. H.; Kim, C.; Maslov, K.; Wang, L. V. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur. J. Radiol. 2009, 70, 227–231.

    Article  Google Scholar 

  14. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol./Hematol. 2002, 43, 33–56.

    Article  Google Scholar 

  15. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  16. Han, J. S.; Zhang, J. J.; Yang, M.; Cui, D. X.; de la Fuente, J. M. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy. Nanoscale 2016, 8, 492–499.

    Article  Google Scholar 

  17. Cui, D.; Jin, G.; Gao, T. W.; Sun, T.; Tian, F.; Estrada, G. G.; Gao, H.; Sarai, A. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 1136–1145.

    Google Scholar 

  18. Chen, X. Y. Multimodality imaging of tumor integrin avβ3 expression. Mini Rev. Med. Chem. 2006, 6, 227–234.

    Article  Google Scholar 

  19. Montet, X.; Montet-Abou, K.; Reynolds, F.; Weissleder, R.; Josephson, L. Nanoparticle imaging of integrins on tumor cells. Neoplasia 2006, 8, 214–222.

    Article  Google Scholar 

  20. Li, Z.; Huang, P.; Zhang, X.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q.; Cui, D. RGD-conjugated dendrimermodified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm. 2009, 7, 94–104.

    Article  Google Scholar 

  21. Wang, K.; Ruan, J.; Qian, Q. R.; Song, H.; Bao, C. C.; Zhang, X. Q.; Kong, Y. F.; Zhang, C. L.; Hu, G. H.; Ni, J. et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnology 2011, 9, 23.

    Article  Google Scholar 

  22. Li, C.; Ji, Y.; Wang, C.; Liang, S. J.; Pan, F.; Zhang, C. L.; Chen, F.; Fu, H. L.; Wang, K.; Cui, D. X. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res. Lett. 2014, 9, 244.

    Article  Google Scholar 

  23. Nie, L. M.; Wang, S. J.; Wang, X. Y.; Rong, P. F.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 2014, 10, 1585–1593.

    Article  Google Scholar 

  24. Shi, J.; Wei, P.-K.; Zhang, S.; Qin, Z.-F.; Li, J.; Sun, D.-Z.; Xiao, Y.; Yu, Z.-H.; Lin, H.-M.; Zheng, G.-J. et al. OB glue paste technique for establishing nude mouse human gastric cancer orthotopic transplantation models. World J. Gastroenterol. 2008, 14, 4800–4804.

    Article  Google Scholar 

  25. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665.

    Article  Google Scholar 

  26. von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxiang Cui.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, C., Conde, J., Pan, F. et al. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 9, 1043–1056 (2016). https://doi.org/10.1007/s12274-016-0996-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0996-y

Keywords

  • gold nanoprisms
  • in situ gastric cancer
  • photoacoustic imaging
  • photothermal therapy