Nano Research

, Volume 9, Issue 4, pp 1032–1042 | Cite as

Indentation fracture toughness of single-crystal Bi2Te3 topological insulators

  • Caterina Lamuta
  • Anna Cupolillo
  • Antonio Politano
  • Ziya S. Aliev
  • Mahammad B. Babanly
  • Evgueni V. Chulkov
  • Leonardo Pagnotta
Research Article

Abstract

Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.

Keywords

topological insulators bismuth telluride (Bi2Te3fracture toughness nanoindentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. et al. Highthermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.CrossRefGoogle Scholar
  2. [2]
    Hamdou, B.; Kimling, J.; Dorn, A.; Pippel, E.; Rostek, R.; Woias, P.; Nielsch, K. Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv. Mater. 2013, 25, 239–244.CrossRefGoogle Scholar
  3. [3]
    Purkayastha, A.; Kim, S.; Gandhi, D. D.; Ganesan, P. G.; Borca-Tasciuc, T.; Ramanath, G. Molecularly protected bismuth telluride nanoparticles: Microemulsion synthesis and thermoelectric transport properties. Adv. Mater. 2006, 18, 2958–2963.CrossRefGoogle Scholar
  4. [4]
    Zhao, L. L.; Wang, X. L.; Fei, F. Y.; Wang, J. Y.; Cheng, Z. X.; Dou, S. X.; Wang, J.; Snyder, G. J. High thermoelectric and mechanical performance in highly dense Cu2-xS bulks prepared by a melt-solidification technique. J. Mater. Chem. A 2015, 3, 9432–9437.CrossRefGoogle Scholar
  5. [5]
    Zhao, L.-D.; Zhang, B.-P.; Li, J.-F.; Zhou, M.; Liu, W.-S.; Liu, J. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2008, 455, 259–264.CrossRefGoogle Scholar
  6. [6]
    Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.CrossRefGoogle Scholar
  7. [7]
    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.CrossRefGoogle Scholar
  8. [8]
    Parker, D.; Singh, D. J. Potential thermoelectric performance from optimization of hole-doped Bi2Se3. Phys. Rev. X 2011, 1, 021005.Google Scholar
  9. [9]
    Menke, E. J.; Brown, M. A.; Li, Q.; Hemminger, J. C.; Penner, R. M. Bismuth telluride (Bi2Te3) nanowires: Synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. Langmuir 2006, 22, 10564–10574.CrossRefGoogle Scholar
  10. [10]
    Nechaev, I. A.; Aguilera, I.; De Renzi, V.; di Bona, A.; Lodi Rizzini, A.; Mio, A. M.; Nicotra, G.; Politano, A.; Scalese, S.; Aliev, Z. S. et al. Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3. Phys. Rev. B 2015, 91, 245123.Google Scholar
  11. [11]
    Henk, J.; Flieger, M.; Maznichenko, I. V.; Mertig, I.; Ernst, A.; Eremeev, S. V.; Chulkov, E. V. Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3. Phys. Rev. Lett. 2012, 109, 076801.CrossRefGoogle Scholar
  12. [12]
    Hasan, M. Z.; Xu, S. Y.; Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks. Phys. Scr. 2015, 2015, 014001.CrossRefGoogle Scholar
  13. [13]
    Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 2013, 7, 2126–2131.CrossRefGoogle Scholar
  14. [14]
    Kim, D.; Cho, S.; Butch, N. P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459–463.Google Scholar
  15. [15]
    Wang, Z.; Qi, X. L.; Zhang, S. C. Topological order parameters for interacting topological insulators. Phys. Rev. Lett. 2010, 105, 256803.CrossRefGoogle Scholar
  16. [16]
    Henk, J.; Ernst, A.; Eremeev, S. V.; Chulkov, E. V.; Maznichenko, I. V.; Mertig, I. Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3. Phys. Rev. Lett. 2012, 108, 206801.Google Scholar
  17. [17]
    Hancock, J. N.; Van Mechelen, J. L. M.; Kuzmenko, A. B.; Van Der Marel, D.; Brüne, C.; Novik, E. G.; Astakhov, G. V.; Buhmann, H.; Molenkamp, L. W. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Phys. Rev. Lett. 2011, 107, 136803.CrossRefGoogle Scholar
  18. [18]
    Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D. K.; Barra, A. L.; Sprinkle, M.; Berger, C.; de Heer, W. A. et al. Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 2008, 101, 267601.Google Scholar
  19. [19]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.CrossRefGoogle Scholar
  20. [20]
    Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.CrossRefGoogle Scholar
  21. [21]
    Sulaev, A.; Zeng, M. G.; Shen, S.-Q.; Cho, S. K.; Zhu, W. G.; Feng, Y. P.; Eremeev, S. V.; Kawazoe, Y.; Shen, L.; Wang, L. Electrically tunable in-plane anisotropic magnetoresistance in topological insulator BiSbTeSe2 nanodevices. Nano Lett. 2015, 15, 2061–2066.CrossRefGoogle Scholar
  22. [22]
    Lu, Y.; Guo, J. Quantum simulation of topological insulator based spin transfer torque device. Appl. Phys. Lett. 2013, 102, 073106.CrossRefGoogle Scholar
  23. [23]
    Williams, J. R.; Bestwick, A. J.; Gallagher, P.; Hong, S. S.; Cui, Y.; Bleich, A. S.; Analytis, J. G.; Fisher, I. R.; Goldhaber-Gordon, D. Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 2012, 109, 056803.CrossRefGoogle Scholar
  24. [24]
    Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 2010, 10, 5032–5036.CrossRefGoogle Scholar
  25. [25]
    Ou, J.-Y.; So, J.-K.; Adamo, G.; Sulaev, A.; Wang, L.; Zheludev, N. I. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 2014, 5, 5139.CrossRefGoogle Scholar
  26. [26]
    Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.CrossRefGoogle Scholar
  27. [27]
    Zhang, X.; Wang, J.; Zhang, S. C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2010, 82, 245107.CrossRefGoogle Scholar
  28. [28]
    Luo, Z.-C.; Liu, M.; Liu, H.; Zheng, X.-W.; Luo, A.-P.; Zhao, C.-J.; Zhang, H.; Wen, S.-C.; Xu, W.-C. 2 GHz passively harmonic mode-locked fiber laser by a microfiberbased topological insulator saturable absorber. Opt. Lett. 2013, 38, 5212–5215.CrossRefGoogle Scholar
  29. [29]
    Zhao, C. J.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z. T.; Wen, S. C.; Tang, D. Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106.Google Scholar
  30. [30]
    Lin, Y. H.; Yang, C. Y.; Lin, S. F.; Tseng, W. H.; Bao, Q. L.; Wu, C. I.; Lin, G. R. Soliton compression of the erbiumdoped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles. Laser Phys. Lett. 2014, 11, 055107.Google Scholar
  31. [31]
    Viti, L.; Coquillat, D.; Politano, A.; Kokh, K. A.; Aliev, Z. S.; Babanly, M. B.; Tereshchenko, O. E.; Knap, W.; Chulkov, E. V.; Vitiello, M. S. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 2016, 16, 80.CrossRefGoogle Scholar
  32. [32]
    Süsstrunk, R.; Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 2015, 349, 47–50.CrossRefGoogle Scholar
  33. [33]
    Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.CrossRefGoogle Scholar
  34. [34]
    Wang, G.; Zhu, X. G.; Sun, Y. Y.; Li, Y. Y.; Zhang, T.; Wen, J.; Chen, X.; He, K.; Wang, L. L.; Ma, X. C. et al. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 2011, 23, 2929–2932.CrossRefGoogle Scholar
  35. [35]
    Plucinski, L.; Mussler, G.; Krumrain, J.; Herdt, A.; Suga, S.; Grützmacher, D.; Schneider, C. M. Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 222503.CrossRefGoogle Scholar
  36. [36]
    Krumrain, J.; Mussler, G.; Borisova, S.; Stoica, T.; Plucinski, L.; Schneider, C. M.; Grützmacher, D. MBE growth optimization of topological insulator Bi2Te3 films. J. Cryst. Growth 2011, 324, 115–118.CrossRefGoogle Scholar
  37. [37]
    Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N. et al. Formation of inert Bi2Se3(0001) cleaved surface. Cryst. Growth Des. 2011, 11, 5507–5514.CrossRefGoogle Scholar
  38. [38]
    Tsipas, P.; Xenogiannopoulou, E.; Kassavetis, S.; Tsoutsou, D.; Golias, E.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, P.; Liang, H.; Caymax, M. et al. Observation of surface dirac cone in high-quality ultrathin epitaxial Bi2Se3 topological insulator on AlN(0001) dielectric. ACS Nano 2014, 8, 6614–6619.CrossRefGoogle Scholar
  39. [39]
    Jiang, Y. P.; Wang, Y. L.; Chen, M.; Li, Z.; Song, C. L.; He, K.; Wang, L. L.; Chen, X.; Ma, X. C.; Xue, Q. K. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 2012, 108, 016401.CrossRefGoogle Scholar
  40. [40]
    Hor, Y. S.; Checkelsky, J. G.; Qu, D.; Ong, N. P.; Cava, R. J. Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3. J. Phys. Chem. Solids 2011, 72, 572–576.CrossRefGoogle Scholar
  41. [41]
    Golyashov, V. A.; Kokh, K. A.; Makarenko, S. V.; Romanyuk, K. N.; Prosvirin, I. P.; Kalinkin, A. V.; Tereshchenko, O. E.; Kozhukhov, A. S.; Sheglov, D. V.; Eremeev, S. V. et al. Inertness and degradation of (0001) surface of Bi2Se3 topological insulator. J. Appl. Phys. 2012, 112, 113702.CrossRefGoogle Scholar
  42. [42]
    Politano, A.; Caputo, M.; Nappini, S.; Bondino, F.; Magnano, E.; Aliev, Z. S.; Babanly, M. B.; Goldoni, A.; Chiarello, G.; Chulkov, E. V. Exploring the surface chemical reactivity of single crystals of binary and ternary bismuth chalcogenides. J. Phys. Chem. C 2014, 118, 21517–21522.CrossRefGoogle Scholar
  43. [43]
    Neupane, M.; Xu, S. Y.; Wray, L. A.; Petersen, A.; Shankar, R.; Alidoust, N.; Liu, C.; Fedorov, A.; Ji, H.; Allred, J. M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 2012, 85, 235406.CrossRefGoogle Scholar
  44. [44]
    Hong, M.; Chen, Z.-G.; Yang, L.; Han, G.; Zou, J. Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control. Adv. Electr. Mater. 2015, 1, DOI: 10.1002/aelm.201500025.Google Scholar
  45. [45]
    Tasi, C.-H.; Tseng, Y.-C.; Jian, S.-R.; Liao, Y.-Y.; Lin, C.-M.; Yang, P.-F.; Chen, D.-L.; Chen, H.-J.; Luo, C.-W.; Juang, J.-Y. Nanomechanical properties of Bi2Te3 thin films by nanoindentation. J. Alloys Compd. 2015, 619, 834–838.CrossRefGoogle Scholar
  46. [46]
    Jian, S.-R.; Tasi, C.-H.; Huang, S.-Y.; Luo, C.-W. Nanoindentation pop-in effects of Bi2Te3 thermoelectric thin films. J. Alloys Compd. 2015, 622, 601–605.CrossRefGoogle Scholar
  47. [47]
    Li, G.; Gadelrab, K. R.; Souier, T.; Potapov, P. L.; Chen, G.; Chiesa, M. Mechanical properties of BixSb2-xTe3 nanostructured thermoelectric material. Nanotechnology 2012, 23, 065703.CrossRefGoogle Scholar
  48. [48]
    Xiong, Z. W.; An, X. Y.; Li, Z. L.; Xiao, T. T.; Chen, X. R. Phase transition, electronic, elastic and thermodynamic properties of Bi2Te3 under high pressure. J. Alloys Compd. 2014, 586, 392–398.CrossRefGoogle Scholar
  49. [49]
    Feng, S. K.; Li, S. M.; Fu, H. Z. First-principle calculation and quasi-harmonic Debye model prediction for elastic and thermodynamic properties of Bi2Te3. Comp. Mater. Sci. 2014, 82, 45–49.CrossRefGoogle Scholar
  50. [50]
    Jenkins, J. O.; Rayne, J. A.; Ure, R. W., Jr. Elastic moduli and phonon properties of Bi2Te3. Phys. Rev. B 1972, 5, 3171–3184.CrossRefGoogle Scholar
  51. [51]
    Standard Test Method for Measurement of Fracture Toughness; ASTM E1820-11; American Society for Testing and Materials, 2011.Google Scholar
  52. [52]
    Standard Test Method for Linear-Elastic Plane Strain Fracture Toughness KIc of Metallic Materials; ASTM E399-09e2; American Society for Testing and Materials, 2011.Google Scholar
  53. [53]
    Palmqvist, S. A method to determine the toughness of brittle materials, especially hard materials. Jernkontorets Ann. 1957, 141, 303–307.Google Scholar
  54. [54]
    Lawn, B. R.; Evans, A. G.; Marshall, D. B. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 1980, 63, 574–581.CrossRefGoogle Scholar
  55. [55]
    Anstis, G. R.; Chantikul, P.; Lawn, B. R.; Marshall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538.CrossRefGoogle Scholar
  56. [56]
    Dukino, R. D.; Swain, M. V. Comparative measurement of indentation fracture toughness with berkovich and vickers indenters. J. Am. Ceram. Soc. 1992, 75, 3299–3304.CrossRefGoogle Scholar
  57. [57]
    Laugier, M. T. Palmqvist indentation toughness in WC-Co composites. J. Mater. Sci. Lett. 1987, 6, 897–900.CrossRefGoogle Scholar
  58. [58]
    Ouchterlony, F. Stress intensity factors for the expansion loaded star crack. Eng. Fract. Mech. 1976, 8, 447–448.CrossRefGoogle Scholar
  59. [59]
    Fischer-Cripps, A. C. Contact mechanics. In Nanoindentation; Springer: New York, 2011; pp 1–19.CrossRefGoogle Scholar
  60. [60]
    Oliver, W. C.; Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20.CrossRefGoogle Scholar
  61. [61]
    Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.CrossRefGoogle Scholar
  62. [62]
    Manjón, F. J.; Vilaplana, R.; Gomis, O.; Pérez-González, E.; Santamaría-Pérez, D.; Marín-Borrás, V.; Segura, A.; González, J.; Rodríguez-Hernández, P.; Muñoz, A. et al. High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Status Solidi B 2013, 250, 669–676.CrossRefGoogle Scholar
  63. [63]
    Koukharenko, E.; Fréty, N.; Nabias, G.; Shepelevich, V. G.; Tedenac, J. C. Microstructural study of Bi2Te3 material obtained by ultrarapid quenching process route. J. Cryst. Growth 2000, 209, 773–778.CrossRefGoogle Scholar
  64. [64]
    Field, J. S.; Swain, M. V.; Dukino, R. D. Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 2003, 18, 1412–1419.CrossRefGoogle Scholar
  65. [65]
    Lorenz, D.; Zeckzer, A.; Hilpert, U.; Grau, P.; Johansen, H.; Leipner, H. S. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 2003, 67, 172101.Google Scholar
  66. [66]
    Fischer-Cripps, A. C. Factors affecting nanoindentation test data. In Nanoindentation; Springer: New York, 2011; pp 77–104.CrossRefGoogle Scholar
  67. [67]
    Volinsky, A. A.; Vella, J. B.; Gerberich, W. W. Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 2003, 429, 201–210.CrossRefGoogle Scholar
  68. [68]
    Ritchie, R. O.; Dauskardt, R. H.; Yu, W. K.; Brendzel, A. M. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications. J. Biomed. Mater. Res. 1990, 24, 189–206.CrossRefGoogle Scholar
  69. [69]
    Sakai, M.; Bradt, R. C.; Fischbach, D. B. Fracture toughness anisotropy of a pyrolytic carbon. J. Mater. Sci. 1986, 21, 1491–1501.CrossRefGoogle Scholar
  70. [70]
    Li, Y. Y.; Wang, G.; Zhu, X. G.; Liu, M. H.; Ye, C.; Chen, X.; Wang, Y. Y.; He, K.; Wang, L. L.; Ma, X. C. et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 2010, 22, 4002–4007.CrossRefGoogle Scholar
  71. [71]
    Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.CrossRefGoogle Scholar
  72. [72]
    Liu, C. X.; Zhang, H. J.; Yan, B. H.; Qi, X. L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S. C. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 2010, 81, 041307(R).Google Scholar
  73. [73]
    Bansal, N.; Kim, Y. S.; Brahlek, M.; Edrey, E.; Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 116804.CrossRefGoogle Scholar
  74. [74]
    Chiu, S. P.; Lin, J. J. Weak antilocalization in topological insulator Bi2Te3 microflakes. Phys. Rev. B 2013, 87, 035122.Google Scholar
  75. [75]
    Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J.-S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.CrossRefGoogle Scholar
  76. [76]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  77. [77]
    Chang, H.-Y.; Yogeesh, M. N.; Ghosh, R.; Rai, A.; Sanne, A.; Yang, S. X.; Lu, N. S.; Banerjee, S. K.; Akinwande, D. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater., in press, DOI: 10.1002/adma.201504309.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Caterina Lamuta
    • 1
  • Anna Cupolillo
    • 2
  • Antonio Politano
    • 2
  • Ziya S. Aliev
    • 3
    • 4
    • 5
  • Mahammad B. Babanly
    • 3
  • Evgueni V. Chulkov
    • 5
    • 6
    • 7
    • 8
    • 9
  • Leonardo Pagnotta
    • 1
  1. 1.Department of Mechanical, Energy and Management EngineeringUniversity of CalabriaRendeItaly
  2. 2.Department of PhysicsUniversity of CalabriaRendeItaly
  3. 3.Institute of Catalysis and Inorganic Chemistry, ANASBakuAzerbaijian
  4. 4.Institute of Physics, ANASBakuAzerbaijian
  5. 5.Donostia International Physics Center (DIPC)San Sebastián/DonostiaSpain
  6. 6.Departamento de Fisica de MaterialesUniversidad del Pais VascoSan Sebastián/DonostiaSpain
  7. 7.Centro de Fisica de Materiales CFM-Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHUSan Sebastián/DonostiaSpain
  8. 8.Saint Petersburg State UniversitySaint PetersburgRussian Federation
  9. 9.Tomsk State UniversityTomskRussian Federation

Personalised recommendations