Nano Research

, Volume 9, Issue 1, pp 224–229 | Cite as

Nonlinear infrared plasmonic waveguide arrays

Research Article

Abstract

The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.

Keywords

infrared plasmonics plasmonic waveguides nonlinear plasmonics waveguide theory waveguide arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2008, 2, 496–500.CrossRefGoogle Scholar
  2. [2]
    Sorger, V. J.; Ye, Z. L.; Oulton, R. F.; Wang, Y.; Bartal, G.; Yin, X. B.; Zhang, X. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2011, 2, 331.Google Scholar
  3. [3]
    Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O’Brien, K.; Wang, Y.; Zhang, X. Adiabatic eliminationbased coupling control in densely packed subwavelength waveguides. Nat. Commun. 2015, 6, 7565.Google Scholar
  4. [4]
    Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.Google Scholar
  5. [5]
    West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808.Google Scholar
  6. [6]
    Naik, G. V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range ai][Invited]. Opt. Mater. Express 2011, 1, 1090–1099.Google Scholar
  7. [7]
    Emani, N. K.; Chung, T.-F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.CrossRefGoogle Scholar
  8. [8]
    Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.Google Scholar
  9. [9]
    Pendry, J. B.; Martín-Moreno, L.; Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848.CrossRefGoogle Scholar
  10. [10]
    Hibbins, A. P.; Evans, B. R.; Sambles, J. R. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672.CrossRefGoogle Scholar
  11. [11]
    Maier, S. A.; Andrews, S. R.; Martín-Moreno, L.; García- Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 2006, 97, 176805.CrossRefGoogle Scholar
  12. [12]
    Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Elect. 1973, 9, 919–933.CrossRefGoogle Scholar
  13. [13]
    Rudnick, J.; Stern, E. A. Second-harmonic radiation from metal surfaces. Phys. Rev. B 1971, 4, 4274–4290.Google Scholar
  14. [14]
    Ciraci, C.; Poutrina, E.; Scalora, M.; Smith, D. R. Secondharmonic generation in metallic nanoparticles: Clarification of the role of the surface. Phys. Rev. B 2012, 86, 115451.Google Scholar
  15. [15]
    Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.CrossRefGoogle Scholar
  16. [16]
    O’Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; Yin, X. B.; Zhang, X. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 2015, 14, 379–383.Google Scholar
  17. [17]
    Yariv, A. Quantum Electronics, 3rd ed.; John WieLy & Sons: New York, 1989; pp 389.Google Scholar
  18. [18]
    Economou, E. N. Surface plasmons in thin films. Phys. Rev. 1969, 182, 539–554.CrossRefGoogle Scholar
  19. [19]
    Shen, J.-T.; Catrysse, P. B.; Fan, S. H. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 2005, 94, 197401.CrossRefGoogle Scholar
  20. [20]
    Orlov, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Complex band structure of nanostructured metal-dielectric metamaterials. Opt. Express 2013, 21, 1593–1598.CrossRefGoogle Scholar
  21. [21]
    Yao, J.; Yang, X. D.; Yin, X. B.; Bartal, G.; Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. USA 2011, 108, 11327–11331.CrossRefGoogle Scholar
  22. [22]
    Afshar V, S.; Monro, T. M. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express 2009, 17, 2298–2318.CrossRefGoogle Scholar
  23. [23]
    De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382–387.CrossRefGoogle Scholar
  24. [24]
    Berini, P.; De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 2012, 6, 16–24.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandro Salandrino
    • 1
  • Yuan Wang
    • 1
  • Xiang Zhang
    • 1
    • 2
  1. 1.NSF Nanoscale Science and Engineering Center (NSEC)University of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.EECS DepartmentUniversity of KansasLawrenceUSA

Personalised recommendations