Advertisement

Nano Research

, Volume 9, Issue 4, pp 996–1004 | Cite as

Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles

  • Jaewon Lee
  • Huazhang Zhu
  • Gautam Ganapati Yadav
  • James Caruthers
  • Yue Wu
Research Article

Abstract

We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.

Keywords

ternary complex metal oxide porous nanoparticle lithium-ion battery core/shell nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_987_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1.80 MB.

References

  1. [1]
    Tsuzuki, T. Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol. 2009, 6, 567–578.CrossRefGoogle Scholar
  2. [2]
    Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48.CrossRefGoogle Scholar
  3. [3]
    Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 1115–1117.CrossRefGoogle Scholar
  4. [4]
    Liang, L. H.; Li, B. W. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 2006, 73, 153303.CrossRefGoogle Scholar
  5. [5]
    Qiu, B.; Sun, L.; Ruan, X. L. Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study. Phys. Rev. B 2011, 83, 035312.CrossRefGoogle Scholar
  6. [6]
    Wu, X. Y.; Li, S. M.; Wang, B.; Liu, J. H.; Yu, M. Controllable synthesis of micro/nano-structured MnCo2O4 with multiporous core–shell architectures as high-performance anode materials for lithium-ion batteries. New J. Chem. 2015, 39, 8416–8423.CrossRefGoogle Scholar
  7. [7]
    Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and MnCo2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.CrossRefGoogle Scholar
  8. [8]
    Hu, L.; Zhong, H.; Zheng, X.; Huang, Y.; Zhang, P.; Chen, Q. MnCo2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.Google Scholar
  9. [9]
    Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.Google Scholar
  10. [10]
    Lee, J.; Yang, J.; Ko, H.; Oh, S.; Kang, J.; Son, J.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S. et al. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 2008, 18, 258–264.CrossRefGoogle Scholar
  11. [11]
    Ha, T. L.; Kim, H. J.; Shin, J.; Im, G. H.; Lee, J. W.; Heo, H.; Yang, J.; Kang, C. M.; Choe, Y. S.; Lee, J. H. et al. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform. Chem. Commun. 2011, 47, 9176–9178.CrossRefGoogle Scholar
  12. [12]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  13. [13]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefGoogle Scholar
  14. [14]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  15. [15]
    Yadav, G. G.; Susoreny, J. A.; Zhang, G. Q.; Yang, H. R.; Wu, Y. Nanostructure-based thermoelectric conversion: An insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3, 3555–3562.CrossRefGoogle Scholar
  16. [16]
    Yadav, G. G.; David, A.; Favaloro, T.; Yang, H. R.; Shakouri, A.; Caruthers, J.; Wu, Y. Synthesis and investigation of thermoelectric and electrochemical properties of porous Ca9Co12O28 nanowires. J. Mater. Chem. A 2013, 1, 11901–11908.CrossRefGoogle Scholar
  17. [17]
    Yadav, G. G.; Zhang, G. Q.; Qiu, B.; Susoreny, J. A.; Ruan, X. L.; Wu, Y. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires. Nanoscale 2011, 3, 4078–4081.CrossRefGoogle Scholar
  18. [18]
    Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136.CrossRefGoogle Scholar
  19. [19]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  20. [20]
    Huang, F.; Zhan, H.; Zhou, Y. H. Studies of nano-sized Co3O4 as anode materials for lithium-ion batteries. Chin. J. Chem. 2003, 21, 1275–1279.CrossRefGoogle Scholar
  21. [21]
    Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223–3227.CrossRefGoogle Scholar
  22. [22]
    Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.CrossRefGoogle Scholar
  23. [23]
    Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046–3052.CrossRefGoogle Scholar
  24. [24]
    Deng, Y. F.; Zhang, Q. M.; Tang, S. D.; Zhang, L. T.; Deng, S. N.; Shi, Z. C.; Chen, G. H. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 6828–6830.CrossRefGoogle Scholar
  25. [25]
    Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.CrossRefGoogle Scholar
  26. [26]
    Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.CrossRefGoogle Scholar
  27. [27]
    Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.CrossRefGoogle Scholar
  28. [28]
    Mohamed, S. G.; Hung, T.-F.; Chen, C.-J.; Chen, C. K.; Hu, S.-F.; Liu, R.-S. Efficient energy storage capabilities promoted by hierarchical ZnMn2O4 nanowire-based architectures. RSC Adv. 2014, 4, 17230–17235.Google Scholar
  29. [29]
    Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Strongly coupled carbon nanofiber-metal oxide coaxial nanocables with enhanced lithium storage properties. Energy Environ. Sci. 2014, 7, 302–305.CrossRefGoogle Scholar
  30. [30]
    Guo, Y.; Yu, L.; Wang, C. Y.; Lin, Z.; Lou, X. W. Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties. Adv. Funct. Mater. 2015, 25, 5184–5189.CrossRefGoogle Scholar
  31. [31]
    Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.CrossRefGoogle Scholar
  32. [32]
    Hou, X. J.; Wang, X. F.; Liu, B.; Wang, Q. F.; Luo, T.; Chen, D.; Shen, G. Z. Hierarchical CoMn2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 2014, 6, 8858–8864.CrossRefGoogle Scholar
  33. [33]
    De Guzman, R. N.; Awaluddin, A.; Shen, Y. F.; Tian, Z. R.; Suib, S. L.; Ching, S.; O’Young, C. L. Electrical resistivity measurements on manganese oxides with layer and tunnel structures: Birnessites, todorokites, and cryptomelanes. Chem. Mater. 1995, 7, 1286–1292.CrossRefGoogle Scholar
  34. [34]
    Shinde, V. R.; Mahadik, S. B.; Gujar, T. P.; Lokhande, C. D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252, 7487–7492.CrossRefGoogle Scholar
  35. [35]
    Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.CrossRefGoogle Scholar
  36. [36]
    Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.CrossRefGoogle Scholar
  37. [37]
    Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305.CrossRefGoogle Scholar
  38. [38]
    Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.CrossRefGoogle Scholar
  39. [39]
    Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.CrossRefGoogle Scholar
  40. [40]
    Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.CrossRefGoogle Scholar
  41. [41]
    Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032–3040.CrossRefGoogle Scholar
  42. [42]
    Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.CrossRefGoogle Scholar
  43. [43]
    Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jaewon Lee
    • 2
  • Huazhang Zhu
    • 3
  • Gautam Ganapati Yadav
    • 2
  • James Caruthers
    • 2
  • Yue Wu
    • 1
    • 3
  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA

Personalised recommendations