Nano Research

, Volume 9, Issue 4, pp 996–1004 | Cite as

Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles

  • Jaewon Lee
  • Huazhang Zhu
  • Gautam Ganapati Yadav
  • James Caruthers
  • Yue Wu
Research Article

Abstract

We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.

Keywords

ternary complex metal oxide porous nanoparticle lithium-ion battery core/shell nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2016_987_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1.80 MB.

References

  1. [1]
    Tsuzuki, T. Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol. 2009, 6, 567–578.CrossRefGoogle Scholar
  2. [2]
    Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48.CrossRefGoogle Scholar
  3. [3]
    Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 1115–1117.CrossRefGoogle Scholar
  4. [4]
    Liang, L. H.; Li, B. W. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B 2006, 73, 153303.CrossRefGoogle Scholar
  5. [5]
    Qiu, B.; Sun, L.; Ruan, X. L. Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study. Phys. Rev. B 2011, 83, 035312.CrossRefGoogle Scholar
  6. [6]
    Wu, X. Y.; Li, S. M.; Wang, B.; Liu, J. H.; Yu, M. Controllable synthesis of micro/nano-structured MnCo2O4 with multiporous core–shell architectures as high-performance anode materials for lithium-ion batteries. New J. Chem. 2015, 39, 8416–8423.CrossRefGoogle Scholar
  7. [7]
    Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and MnCo2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.CrossRefGoogle Scholar
  8. [8]
    Hu, L.; Zhong, H.; Zheng, X.; Huang, Y.; Zhang, P.; Chen, Q. MnCo2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.Google Scholar
  9. [9]
    Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.Google Scholar
  10. [10]
    Lee, J.; Yang, J.; Ko, H.; Oh, S.; Kang, J.; Son, J.; Lee, K.; Lee, S. W.; Yoon, H. G.; Suh, J. S. et al. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 2008, 18, 258–264.CrossRefGoogle Scholar
  11. [11]
    Ha, T. L.; Kim, H. J.; Shin, J.; Im, G. H.; Lee, J. W.; Heo, H.; Yang, J.; Kang, C. M.; Choe, Y. S.; Lee, J. H. et al. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform. Chem. Commun. 2011, 47, 9176–9178.CrossRefGoogle Scholar
  12. [12]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  13. [13]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefGoogle Scholar
  14. [14]
    Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRefGoogle Scholar
  15. [15]
    Yadav, G. G.; Susoreny, J. A.; Zhang, G. Q.; Yang, H. R.; Wu, Y. Nanostructure-based thermoelectric conversion: An insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3, 3555–3562.CrossRefGoogle Scholar
  16. [16]
    Yadav, G. G.; David, A.; Favaloro, T.; Yang, H. R.; Shakouri, A.; Caruthers, J.; Wu, Y. Synthesis and investigation of thermoelectric and electrochemical properties of porous Ca9Co12O28 nanowires. J. Mater. Chem. A 2013, 1, 11901–11908.CrossRefGoogle Scholar
  17. [17]
    Yadav, G. G.; Zhang, G. Q.; Qiu, B.; Susoreny, J. A.; Ruan, X. L.; Wu, Y. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires. Nanoscale 2011, 3, 4078–4081.CrossRefGoogle Scholar
  18. [18]
    Hu, Y. Y.; Liu, Z. G.; Nam, K. W.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K. M.; Du, L. S. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136.CrossRefGoogle Scholar
  19. [19]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  20. [20]
    Huang, F.; Zhan, H.; Zhou, Y. H. Studies of nano-sized Co3O4 as anode materials for lithium-ion batteries. Chin. J. Chem. 2003, 21, 1275–1279.CrossRefGoogle Scholar
  21. [21]
    Gao, J.; Lowe, M. A.; Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 2011, 23, 3223–3227.CrossRefGoogle Scholar
  22. [22]
    Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.CrossRefGoogle Scholar
  23. [23]
    Liu, H.; Wang, G. X.; Liu, J.; Qiao, S. Z.; Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 2011, 21, 3046–3052.CrossRefGoogle Scholar
  24. [24]
    Deng, Y. F.; Zhang, Q. M.; Tang, S. D.; Zhang, L. T.; Deng, S. N.; Shi, Z. C.; Chen, G. H. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 6828–6830.CrossRefGoogle Scholar
  25. [25]
    Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981–988.CrossRefGoogle Scholar
  26. [26]
    Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.CrossRefGoogle Scholar
  27. [27]
    Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.CrossRefGoogle Scholar
  28. [28]
    Mohamed, S. G.; Hung, T.-F.; Chen, C.-J.; Chen, C. K.; Hu, S.-F.; Liu, R.-S. Efficient energy storage capabilities promoted by hierarchical ZnMn2O4 nanowire-based architectures. RSC Adv. 2014, 4, 17230–17235.Google Scholar
  29. [29]
    Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Strongly coupled carbon nanofiber-metal oxide coaxial nanocables with enhanced lithium storage properties. Energy Environ. Sci. 2014, 7, 302–305.CrossRefGoogle Scholar
  30. [30]
    Guo, Y.; Yu, L.; Wang, C. Y.; Lin, Z.; Lou, X. W. Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties. Adv. Funct. Mater. 2015, 25, 5184–5189.CrossRefGoogle Scholar
  31. [31]
    Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.CrossRefGoogle Scholar
  32. [32]
    Hou, X. J.; Wang, X. F.; Liu, B.; Wang, Q. F.; Luo, T.; Chen, D.; Shen, G. Z. Hierarchical CoMn2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 2014, 6, 8858–8864.CrossRefGoogle Scholar
  33. [33]
    De Guzman, R. N.; Awaluddin, A.; Shen, Y. F.; Tian, Z. R.; Suib, S. L.; Ching, S.; O’Young, C. L. Electrical resistivity measurements on manganese oxides with layer and tunnel structures: Birnessites, todorokites, and cryptomelanes. Chem. Mater. 1995, 7, 1286–1292.CrossRefGoogle Scholar
  34. [34]
    Shinde, V. R.; Mahadik, S. B.; Gujar, T. P.; Lokhande, C. D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252, 7487–7492.CrossRefGoogle Scholar
  35. [35]
    Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.CrossRefGoogle Scholar
  36. [36]
    Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.CrossRefGoogle Scholar
  37. [37]
    Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305.CrossRefGoogle Scholar
  38. [38]
    Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.CrossRefGoogle Scholar
  39. [39]
    Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.CrossRefGoogle Scholar
  40. [40]
    Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α Fe2O3. J. Electrochem. Soc. 2003, 150, A133–A139.CrossRefGoogle Scholar
  41. [41]
    Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032–3040.CrossRefGoogle Scholar
  42. [42]
    Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.CrossRefGoogle Scholar
  43. [43]
    Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jaewon Lee
    • 2
  • Huazhang Zhu
    • 3
  • Gautam Ganapati Yadav
    • 2
  • James Caruthers
    • 2
  • Yue Wu
    • 1
    • 3
  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA
  4. 4.Energy InstituteCity College of New YorkNew YorkUSA

Personalised recommendations