Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures

Abstract

We report the synthesis and electrochemical sodium storage of cobalt disulfide (CoS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solvothermal route or nanooctahedrons constructed solid (O-CoS2) and hollow microstructures (H-CoS2) fabricated by hydrothermal methods. Among three morphologies, H-CoS2 exhibits the largest discharge capacities and best rate performance as anode of sodium-ion batteries (SIBs). Furthermore, H-CoS2 delivers a capacity of 690 mA·h·g−1 at 1 A·g−1 after 100 cycles in a potential range of 0.1–3.0 V, and ∼240 mA·h·g−1 over 800 cycles in the potential window of 1.0–3.0 V. This cycling difference mainly lies in the two discharge plateaus observed in 0.1–3.0 V and one discharge plateau in 1.0–3.0 V. To interpret the reactions, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are applied. The results show that at the first plateau around 1.4 V, the insertion reaction (CoS2 + xNa+ + xe → Na x CoS2) occurs; while at the second plateau around 0.6 V, the conversion reaction (Na x CoS2 + (4 − x) Na+ + (4 − x)e → Co + 2Na2S) takes place. This provides insights for electrochemical sodium storage of CoS2 as the anode of SIBs.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzá lez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  2. [2]

    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  3. [3]

    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  4. [4]

    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  5. [5]

    Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

    Article  Google Scholar 

  6. [6]

    You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K.-W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

    Article  Google Scholar 

  7. [7]

    Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem. 2014, 126, 6002–6006.

    Article  Google Scholar 

  8. [8]

    Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  9. [9]

    Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

    Article  Google Scholar 

  10. [10]

    Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.

    Article  Google Scholar 

  11. [11]

    Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chemistry 2014, 20, 11980–11992.

    Article  Google Scholar 

  12. [12]

    Zhang, B.; Huang, J. Q.; Kim, J. K. Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries. Adv. Funct. Mater. 2015, 25, 5222–5228.

    Article  Google Scholar 

  13. [13]

    Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28–30, 1172–1175.

    Article  Google Scholar 

  14. [14]

    Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

    Article  Google Scholar 

  15. [15]

    Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for highrate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

    Google Scholar 

  16. [16]

    Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X.-Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

    Google Scholar 

  17. [17]

    Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Article  Google Scholar 

  18. [18]

    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  19. [19]

    Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481–489.

    Article  Google Scholar 

  20. [20]

    David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770.

    Article  Google Scholar 

  21. [21]

    Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794–12798.

    Article  Google Scholar 

  22. [22]

    Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/ charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.

    Article  Google Scholar 

  23. [23]

    Zhang, S. S. The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J. Mater. Chem. A 2015, 3, 7689–7694.

    Article  Google Scholar 

  24. [24]

    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

    Article  Google Scholar 

  25. [25]

    Shadike, Z.; Cao, M. H.; Ding, F.; Sang, L.; Fu, Z. W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486–10489.

    Article  Google Scholar 

  26. [26]

    Xing, J. C.; Zhu, Y. L.; Zhou, Q. W.; Zheng, X. D.; Jiao, Q. J. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 2014, 136, 550–556.

    Article  Google Scholar 

  27. [27]

    Peng, S. J.; Li, L. L.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 2014, 7, 2212–2220.

    Article  Google Scholar 

  28. [28]

    Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. A self-standing and flexible electrode of yolk–shell CoS2 spheres encapsulated with nitrogen-doped graphene for highperformance lithium-ion batteries. Chem.—Eur. J. 2015, 21, 4359–4367.

    Article  Google Scholar 

  29. [29]

    Wang, Y. M.; Wu, J. J.; Tang, Y. F.; Lü, X. J.; Yang, C. Y.; Qin, M. S.; Huang, F. Q.; Li, X.; Zhang, X. Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4246–4250.

    Article  Google Scholar 

  30. [30]

    Zhang, L.; Wu, H. B.; Lou, X. W. Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem. Commun. 2012, 48, 6912–6914.

    Article  Google Scholar 

  31. [31]

    Gao, J. H.; Liang, G. L.; Zhang, B.; Kuang, Y.; Zhang, X. X.; Xu, B. FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill hela cells. J. Am. Chem. Soc. 2007, 129, 1428–1433.

    Article  Google Scholar 

  32. [32]

    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  33. [33]

    Wang, Q. H.; Jiao, L. F.; Han, Y.; Du, H. M.; Peng, W. X.; Huan, Q. N.; Song, D. W.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. CoS2 hollow spheres: Fabrication and their application in lithium-ion batteries. J. Phys. Chem. C 2011, 115, 8300–8304.

    Article  Google Scholar 

  34. [34]

    Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.

    Article  Google Scholar 

  35. [35]

    Hu, Z.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. FeS2 microspheres with an ether-based electrolyte for highperformance rechargeable lithium batteries. J. Mater. Chem. A 2015, 3, 12898–12904.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, K., Lei, K. et al. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9, 198–206 (2016). https://doi.org/10.1007/s12274-016-0981-5

Download citation

Keywords

  • cobalt disulfide
  • micro/nano-structures
  • sodium storage mechanism
  • cycling stability