Skip to main content
Log in

A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction

Nano Research Aims and scope Submit manuscript

Abstract

High gravimetric energy density, earth-abundance, and environmental friendliness of hydrogen sources have inspired the utilization of hydrogen fuel as a clean alternative to fossil fuels. Hydrogen evolution reaction (HER), a half reaction of water splitting, is crucial to the low-cost production of pure H2 fuels but necessitates the use of electrocatalysts to expedite reaction kinetics. Owing to the availability of low-cost oxygen evolution reaction (OER) catalysts for the counter electrode in alkaline media and the lack of low-cost OER catalysts in acidic media, researchers have focused on developing HER catalysts in alkaline media with high activity and stability. Nickel is well-known as an HER catalyst and continuous efforts have been undertaken to improve Ni-based catalysts as alkaline electrolyzers. In this review, we summarize earlier studies of HER activity and mechanism on Ni surfaces, along with recent progress in the optimization of the Ni-based catalysts using various modern techniques. Recently developed Ni-based HER catalysts are categorized according to their chemical nature, and the advantages as well as limitations of each category are discussed. Among all Ni-based catalysts, Ni-based alloys and Ni-based hetero-structure exhibit the most promising electrocatalytic activity and stability owing to the fine-tuning of their surface adsorption properties via a synergistic nearby element or domain. Finally, selected applications of the developed Ni-based HER catalysts are highlighted, such as water splitting, the chloralkali process, and microbial electrolysis cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

    Article  Google Scholar 

  2. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

    Article  Google Scholar 

  3. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  4. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  5. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  Google Scholar 

  6. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  7. Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  8. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Physics Today 2004, 57, 39–44.

    Article  Google Scholar 

  9. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  10. Häussinger, P.; Lohmü ller, R.; Watson, A. M. Hydrogen. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000.

  11. Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on pem water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

    Article  Google Scholar 

  12. Gong, M.; Dai, H. J. A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

  13. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.

    Article  Google Scholar 

  14. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

    Article  Google Scholar 

  15. Lasia, A. Hydrogen evolution reaction. In Handbook of Fuel Cells; John Wiley & Sons: New York, 2010.

    Book  Google Scholar 

  16. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M. Electrocatalysis of the her in acid and alkaline media. J. Serb. Chem. Soc. 2013, 78, 2007–2015.

    Article  Google Scholar 

  17. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

  18. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nø rskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  Google Scholar 

  19. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nø rskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  20. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  21. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.

    Article  Google Scholar 

  22. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  23. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

    Article  Google Scholar 

  24. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  25. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  26. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  27. Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a highperformance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860–7863.

    Article  Google Scholar 

  28. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  29. Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118, 21347–21356.

    Article  Google Scholar 

  30. Gao, M.-R.; Cao, X.; Gao, Q.; Xu, Y.-F.; Zheng, Y.-R.; Jiang, J.; Yu, S.-H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.

    Article  Google Scholar 

  31. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Google Scholar 

  32. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  Google Scholar 

  33. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. 2014, 126, 5531–5534.

    Article  Google Scholar 

  34. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  Google Scholar 

  35. Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.

    Article  Google Scholar 

  36. Wang, D.-Y.; Gong, M.; Chou, H.-L.; Pan, C.-J.; Chen, H.-A.; Wu, Y. P.; Lin, M.-C.; Guan, M. Y.; Yang, J.; Chen, C.-W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS 2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592.

    Article  Google Scholar 

  37. Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666.

    Article  Google Scholar 

  38. Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027.

    Article  Google Scholar 

  39. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

    Article  Google Scholar 

  40. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  41. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  42. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  43. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  Google Scholar 

  44. Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  45. Lu, Z. Y.; Wang, H. T.; Kong, D.; Yan, K.; Hsu, P.-C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

    Google Scholar 

  46. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Google Scholar 

  47. Davis, J. R. Nickel, Cobalt, and Their Alloys; ASM international: Materials Park, OH, 2000.

    Google Scholar 

  48. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. Lond. A 1909, 82, 172–175.

    Article  Google Scholar 

  49. Fournier, J.; Brossard, L.; Tilquin, J. Y.; Coté, R.; Dodelet, J. P.; Guay, D.; Mé nard, H. Hydrogen evolution reaction in alkaline solution: Catalytic influence of pt supported on graphite vs. Pt inclusions in graphite. J. Electrochem. Soc. 1996, 143, 919–926.

    Article  Google Scholar 

  50. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

    Article  Google Scholar 

  51. Devanathan, M. A. V.; Selvaratnam, M. Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans. Faraday Soc. 1960, 56, 1820–1831.

    Article  Google Scholar 

  52. Miles, M.; Kissel, G.; Lu, P. W. T.; Srinivasan, S. Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. J. Electrochem. Soc. 1976, 123, 332–336.

    Article  Google Scholar 

  53. Krstajic, N.; Popovic, M.; Grgur, B.; Vojnović, M.; Šepa, D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 2001, 512, 16–26.

    Article  Google Scholar 

  54. Diard, J.-P.; LeGorrec, B.; Maximovitch, S. Etude de l’activation du degagement d’hydrogene sur electrode d’oxyde de nickel par spectroscopie d’impedance. Electrochim. Acta 1990, 35, 1099–1108.

    Article  Google Scholar 

  55. Kreysa, G.; Hakansson, B.; Ekdunge, P. Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes. Electrochim. Acta 1988, 33, 1351–1357.

    Article  Google Scholar 

  56. LeRoy, R. L.; Janjua, M. B. I.; Renaud, R.; Leuenberger, U. Analysis of time-variation effects in water electrolyzers. J. Electrochem. Soc. 1979, 126, 1674–1682.

    Article  Google Scholar 

  57. Soares, D. M.; Teschke, O.; Torriani, I. Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. J. Electrochem. Soc. 1992, 139, 98–105.

    Article  Google Scholar 

  58. Bernardini, M.; Comisso, N.; Davolio, G.; Mengoli, G. Formation of nickel hydrides by hydrogen evolution in alkaline media. J. Electroanal. Chem. 1998, 442, 125–135.

    Article  Google Scholar 

  59. Weininger, J. L.; Breiter, M. W. Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J. Electrochem. Soc. 1964, 111, 707–712.

    Article  Google Scholar 

  60. Raveendran, P.; Fu, J.; Wallen, S. L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941.

    Article  Google Scholar 

  61. Grzelczak, M.; Pé rez-Juste, J.; Mulvaney, P.; Liz-Marzá n, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    Article  Google Scholar 

  62. Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

    Article  Google Scholar 

  63. Lin, Y.-Y.; Wang, D.-Y.; Yen, H.-C.; Chen, H.-L.; Chen, C.-C.; Chen, C.-M.; Tang, C.-Y.; Chen, C.-W. Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 2009, 20, 405207.

    Google Scholar 

  64. Wang, D. Y.; Jiang, Y. T.; Lin, C. C.; Li, S. S.; Wang, Y. T.; Chen, C. C.; Chen, C. W. Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to nir photodetection. Adv. Mater. 2012, 24, 3415–3420.

    Article  Google Scholar 

  65. Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694–6698.

    Article  Google Scholar 

  66. Chen, D.-H.; Wu, S.-H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 2000, 12, 1354–1360.

    Article  Google Scholar 

  67. Wu, S.-H.; Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interf. Sci. 2003, 259, 282–286.

    Article  Google Scholar 

  68. Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A: Gen. 2010, 385, 201–207.

    Article  Google Scholar 

  69. Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

    Article  Google Scholar 

  70. Gong, M.; Li, Y. G.; Zhang, H. B.; Zhang, B.; Zhou, W.; Feng, J.; Wang, H. L.; Liang, Y. Y.; Fan, Z. J.; Liu, J. et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci 2014, 7, 2025–2032.

    Article  Google Scholar 

  71. Zhou, H. H.; Peng, C. Y.; Jiao, S. Q.; Zeng, W.; Chen, J. H.; Kuang, Y. F. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun. 2006, 8, 1142–1146.

    Article  Google Scholar 

  72. Hang, T.; Hu, A. M.; Ling, H. Q.; Li, M.; Mao, D. L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl. Surf. Sci. 2010, 256, 2400–2404.

    Article  Google Scholar 

  73. Ahn, S. H.; Hwang, S. J.; Yoo, S. J.; Choi, I.; Kim, H.-J.; Jang, J. H.; Nam, S. W.; Lim, T.-H.; Lim, T.; Kim, S.-K. et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J. Mater. Chem. 2012, 22, 15153–15159.

    Article  Google Scholar 

  74. McArthur, M. A.; Jorge, L.; Coulombe, S.; Omanovic, S. Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J. Power Sources 2014, 266, 365–373.

    Article  Google Scholar 

  75. Brown, D. E.; Mahmood, M. N.; Man, M. C. M.; Turner, A. K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 1984, 29, 1551–1556.

    Article  Google Scholar 

  76. Raj, I. A.; Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution—Electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 1990, 20, 32–38.

    Article  Google Scholar 

  77. Raj, I. A.; Vasu, K. I. Transition metal-based cathodes for hydrogen evolution in alkaline solution: Electrocatalysis on nickel-based ternary electrolytic codeposits. J. Appl. Electrochem. 1992, 22, 471–477.

    Article  Google Scholar 

  78. Angelo, A. C. D.; Lasia, A. Surface effects in the hydrogen evolution reaction on Ni–Zn alloy electrodes in alkaline solutions. J. Electrochem. Soc. 1995, 142, 3313–3319.

    Article  Google Scholar 

  79. Lupi, C.; Dell’Era, A.; Pasquali, M. Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrogen Energy 2009, 34, 2101–2106.

    Article  Google Scholar 

  80. Dong, H. X.; Lei, T.; He, Y. H.; Xu, N. P.; Huang, B. Y.; Liu, C. T. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy 2011, 36, 12112–12120.

    Article  Google Scholar 

  81. McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166–169.

    Article  Google Scholar 

  82. Campbell, J. A.; Whiteker, R. A. A periodic table based on potential–pH diagrams. J. Chem. Educ. 1969, 46, 90.

    Google Scholar 

  83. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grä tzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  84. Wang, H. T.; Lee, H.-W.; Deng, Y.; Lu, Z. Y.; Hsu, P.-C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

    Article  Google Scholar 

  85. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

    Article  Google Scholar 

  86. Han, Q.; Liu, K. R.; Chen, J. S.; Wei, X. J. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int. J. Hydrogen Energy 2003, 28, 1207–1212.

    Article  Google Scholar 

  87. Paseka, I. Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni–P(x) electrodes. Electrochim. Acta 1995, 40, 1633–1640.

    Article  Google Scholar 

  88. Burchardt, T. Hydrogen evolution on NiPx alloys: The influence of sorbed hydrogen. Int. J. Hydrogen Energy 2001, 26, 1193–1198.

    Article  Google Scholar 

  89. Feng, L. G.; Vrubel, H.; Bensimon, M.; Hu, X. L. Easilyprepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921.

    Article  Google Scholar 

  90. Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2014, 2, 18593–18599.

    Article  Google Scholar 

  91. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

    Article  Google Scholar 

  92. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 2012, 124, 12663–12666.

    Article  Google Scholar 

  93. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J. G.; Guan, M. Y.; Lin, M.-C.; Zhang, B.; Hu, Y. F.; Wang, D.-Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

    Article  Google Scholar 

  94. Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. G.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO–Ni electrocatalyst for sustained water splitting. Angew. Chem. 2015, 127, 12157–12161.

    Article  Google Scholar 

  95. Duby, P. The history of progress in dimensionally stable anodes. JOM 1993, 45, 41–43.

    Article  Google Scholar 

  96. Yoshida, N.; Morimoto, T. A new low hydrogen overvoltage cathode for chlor–alkali electrolysis cell. Electrochim. Acta 1994, 39, 1733–1737.

    Google Scholar 

  97. Pilla, A. S.; Cobo, E. O.; Duarte, M. M. E.; Salinas, D. R. Evaluation of anode deactivation in chlor–alkali cells. J. Appl. Electrochem. 1997, 27, 1283–1289.

    Article  Google Scholar 

  98. Jiang, N.; Meng, H.-M.; Song, L.-J.; Yu, H.-Y. Study on Ni–Fe–C cathode for hydrogen evolution from seawater electrolysis. Int. J. Hydrogen Energy 2010, 35, 8056–8062.

    Article  Google Scholar 

  99. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.

    Article  Google Scholar 

  100. Feng, J.; Gong, M.; Kenney, M. J.; Wu, J. Z.; Zhang, B.; Li, Y. G.; Dai, H. J. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res. 2015, 8, 1577–1583.

    Article  Google Scholar 

  101. McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583.

    Article  Google Scholar 

  102. Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J. W.; Metz, S. J.; Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 2006, 31, 1632–1640.

    Article  Google Scholar 

  103. Logan, B. E.; Call, D.; Cheng, S. A.; Hamelers, H. V. M.; Sleutels, T. H. J. A.; Jeremiasse, A. W.; Rozendal, R. A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42, 8630–8640.

    Article  Google Scholar 

  104. Selembo, P. A.; Merrill, M. D.; Logan, B. E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy 2010, 35, 428–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia-Chun Chen, Bing-Joe Hwang or Hongjie Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Wang, DY., Chen, CC. et al. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2016). https://doi.org/10.1007/s12274-015-0965-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0965-x

Keywords

Navigation