Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions

Abstract

We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nanotubes (CNTs) prepared by a two-step process. Firstly, reduced GO–CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π–π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO–CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of ~38 mV·decade−1, and an apparent exchange current density of 74.25 mA·cm−2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Article  Google Scholar 

  2. [2]

    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  3. [3]

    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  4. [4]

    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  5. [5]

    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Google Scholar 

  6. [6]

    Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.

    Article  Google Scholar 

  7. [7]

    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  8. [8]

    Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    Article  Google Scholar 

  9. [9]

    Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  Google Scholar 

  10. [10]

    Popczun, E. J.; Read, C. G.; Roske, C. W; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    Article  Google Scholar 

  11. [11]

    Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

    Article  Google Scholar 

  12. [12]

    Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.

    Article  Google Scholar 

  13. [13]

    Trasatti, S. Electrocatalysis of hydrogen evolution: Progress in cathode activation. In Advances in Electrochemical Science and Engineering, Volume 2. Gerischer, H.; Tobias, C. W., Eds.; Weinheim: VCH Verlagsgesellschaft mbH, 1992.

    Google Scholar 

  14. [14]

    Varpness, Z.; Peters, J. W.; Young, M.; Douglas, T. Biomimetic synthesis of a H2 catalyst using a protein cage architecture. Nano Lett. 2005, 5, 2306–2309.

    Article  Google Scholar 

  15. [15]

    Fang, B. Z.; Kim, J. H.; Yu, J. S. Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem. Commun. 2008, 10, 659–662.

    Article  Google Scholar 

  16. [16]

    Grigoriev, S. A.; Millet, P.; Fateev, V. N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sources 2008, 177, 281–285.

    Article  Google Scholar 

  17. [17]

    Yan, Y.; Zhang, L.; Qi, X. Y.; Song, H.; Wang, J. Y.; Zhang, H.; Wang, X. Template-free pseudomorphic synthesis of tungsten carbide nanorods. Small 2012, 8, 3350–3356.

    Article  Google Scholar 

  18. [18]

    McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573–3583.

    Article  Google Scholar 

  19. [19]

    Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  20. [20]

    Laursen, A. B.; Kegnæ s, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—Efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577–5591.

    Article  Google Scholar 

  21. [21]

    Ge, P. Y.; Scanlon, M. D.; Peljo, P.; Bian, X. J.; Vubrel, H.; O’Neill, A.; Coleman, J. N.; Cantoni, M.; Hu, X. L.; Kontturi, K. et al. Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chem. Commun. 2012, 48, 6484–6486.

    Article  Google Scholar 

  22. [22]

    Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

    Article  Google Scholar 

  23. [23]

    Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.

    Article  Google Scholar 

  24. [24]

    Bian, X. J.; Scanlon, M. D.; Wang, S. N.; Liao, L.; Tang, Y.; Liu, B. H.; Girault, H. H. Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chem. Sci. 2013, 4, 3432–3441.

    Article  Google Scholar 

  25. [25]

    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  Google Scholar 

  26. [26]

    Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

    Article  Google Scholar 

  27. [27]

    Chang, Y. H; Wu, F. Y.; Chen, T. Y.; Hsu, C. L.; Chen, C. H.; Wiryo, F.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Threedimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small 2014, 10, 895–900.

    Article  Google Scholar 

  28. [28]

    Geim, A. K. Graphene: status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  29. [29]

    Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 2009, 3, 3730–3736.

    Article  Google Scholar 

  30. [30]

    Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

    Article  Google Scholar 

  31. [31]

    Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  Google Scholar 

  32. [32]

    Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  33. [33]

    Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.

    Article  Google Scholar 

  34. [34]

    Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.

    Google Scholar 

  35. [35]

    Sun, T.; Zhang, Z. Y.; Xiao, J. W.; Chen, C.; Xiao, F.; Wang, S.; Liu, Y. Q. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci. Rep. 2013, 3, 2527.

    Google Scholar 

  36. [36]

    Seo, B.; Jung, G. Y.; Sa Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C. Shin, H. S.; Kwak, S. K. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 2015, 9, 3728–3739.

    Article  Google Scholar 

  37. [37]

    Li, H. L.; Yu, K.; Fuo, H.; Guo, B. J.; Lei, X.; Zhou, Z. Q. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C 2015, 119, 7959–7968.

    Article  Google Scholar 

  38. [38]

    Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.

    Article  Google Scholar 

  39. [39]

    Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.

    Article  Google Scholar 

  40. [40]

    Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun. 2010, 12, 1052–1055.

    Article  Google Scholar 

  41. [41]

    Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    Article  Google Scholar 

  42. [42]

    Park, W.; Baik, J.; Kim, T.-Y.; Cho, K.; Hong, W.-K.; Shin, H.-J.; Lee, T. Photoelectron spectroscopic imaging and device applications of large-area patternable single-layer MoS2 synthesized by chemical vapor deposition. ACS Nano 2014, 8, 4961–4968.

    Article  Google Scholar 

  43. [43]

    Sun, Z.; Zhao, Q. S.; Zhang, G. H.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Exfoliated MoS2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Adv. 2015, 5, 10352–10357.

    Article  Google Scholar 

  44. [44]

    Verble, J. L.; Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 1970, 25, 362–365.

    Article  Google Scholar 

  45. [45]

    Li, Q.; Walter, E. C.; van der Veer, W. E.; Murray, B. J.; Newberg, J. T.; Bohannan, E. W.; Switzer, J. A.; Hemminger, J. C.; Penner, R. M. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B 2005, 109, 3169–3182.

    Article  Google Scholar 

  46. [46]

    Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schü ller, C.; Korn, T. Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 2012, 101, 101906.

    Article  Google Scholar 

  47. [47]

    Wang, Z.; Chen, T.; Chen, W. X.; Chang, K.; Ma, L.; Huang, G. C.; Chen, D. Y.; Lee, J. Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 2013, 1, 2202–2210.

    Article  Google Scholar 

  48. [48]

    Ma, Y. W.; Sun, L. Y.; Huang, W.; Zhang, L. R.; Zhao, J.; Fan, Q. L.; Huang, W. Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 24592–24597.

    Article  Google Scholar 

  49. [49]

    Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594.

    Article  Google Scholar 

  50. [50]

    Liao, T.; Sun, Z. Q.; Sun, C. H.; Dou, S. X.; Searles, D. J. Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst. Sci. Rep. 2014, 4, 6256.

    Article  Google Scholar 

  51. [51]

    Tao, L.; Duan, X. D.; Wang, C.; Duan, X. F.; Wang, S. Y. Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2015, 51, 7470–7473.

    Article  Google Scholar 

  52. [52]

    Ressler, T.; Wienold, R. E.; Wienold, J.; Günter, M. M.; Timpe, O. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J. Phys. Chem. B 2000, 104, 6360–6370.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Majid Khan or Zemin Qi.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Yousaf, A.B., Chen, M. et al. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 9, 837–848 (2016). https://doi.org/10.1007/s12274-015-0963-z

Download citation

Keywords

  • 3D nanostructure
  • MoS2
  • graphene
  • carbon nanotubes
  • hydrogen evolution reaction