Topological to trivial insulating phase transition in stanene


Electronic properties of stanene, the Sn counterpart of graphene are theoretically studied using first-principles simulations. The topological to trivial insulating phase transition induced by an out-of-plane electric field or by quantum confinement effects is predicted. The results highlight the potential to use stanene nanoribbons in gate-voltage controlled dissipationless spin-based devices and are used to set the minimal nanoribbon width for such devices, which is typically approximately 5 nm.

This is a preview of subscription content, access via your institution.


  1. [1]

    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  Google Scholar 

  2. [2]

    Fiori, G.; Bonaccorso, F; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Google Scholar 

  3. [3]

    Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

    Article  Google Scholar 

  4. [4]

    Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, Y. H.; Grill, A.; Avouris, Ph. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.

    Article  Google Scholar 

  5. [5]

    Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  Google Scholar 

  6. [6]

    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  7. [7]

    Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Google Scholar 

  8. [8]

    Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys.: Condens. Matter 2015, 27, 253002–253020.

    Google Scholar 

  9. [9]

    Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

    Google Scholar 

  10. [10]

    Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S. Z. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Article  Google Scholar 

  11. [11]

    Wu, S. C.; Shan, G. C.; Yan, B. H. Prediction of near-roomtemperature quantum anomalous Hall effect on honeycomb materials. Phys. Rev. Lett. 2014, 113, 256401.

    Article  Google Scholar 

  12. [12]

    Suarez Negreira, A.; Vandenberghe, W. G.; Fischetti, M. V. Ab initio study of the electronic properties and thermodynamic stability of supported and functionalized two-dimensional Sn films. Phys. Rev. B 2015, 91, 245103.

    Google Scholar 

  13. [13]

    van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Materials 2014, 1, 021004.

    Article  Google Scholar 

  14. [14]

    Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    Google Scholar 

  15. [15]

    Xu, Y.; Tang, P. Z.; Zhang, S. C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B 2015, 92, 081112.

    Google Scholar 

  16. [16]

    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  17. [17]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  18. [18]

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  19. [19]

    Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012, 14, 033003.

    Google Scholar 

  20. [20]

    Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

    Article  Google Scholar 

  21. [21]

    Min, H.; Hill, J. E.; Sinitsyn, N. A.; Sahu, B. R., Kleinman, L.; MacDonald, A. H. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 2006, 74, 165310.

    Article  Google Scholar 

  22. [22]

    Liu, C. C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

    Article  Google Scholar 

  23. [23]

    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michel Houssa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Houssa, M., van den Broek, B., Iordanidou, K. et al. Topological to trivial insulating phase transition in stanene. Nano Res. 9, 774–778 (2016).

Download citation


  • two-dimensional (2D) materials
  • topological insulators
  • density functional theory (DFT) simulations
  • electronic structure