Nano Research

, Volume 9, Issue 3, pp 766–773 | Cite as

Mirror-twin induced bicrystalline InAs nanoleaves

  • Mun Teng Soo
  • Kun Zheng
  • Qiang Gao
  • Hark Hoe Tan
  • Chennupati Jagadish
  • Jin Zou
Research Article


In this study, leaf-like one-dimensional InAs nanostructures were grown by the metal–organic chemical vapor deposition method. Detailed structural characterization suggests that the nanoleaves contain relatively low-energy {122} or {133} mirror twins acting as their midribs and narrow sections connecting the nanoleaves and their underlying bases as petioles. Importantly, the mirror twins lead to identical lateral growth of the twinned structures in terms of crystallography and polarity, which is essential for the formation of lateral symmetrical nanoleaves. It has been found that the formation of nanoleaves is driven by catalyst energy minimization. This study provides a biomimic of leaf found in nature by fabricating a semiconductor nanoleaf.


InAs nanoleaf twin boundary mirror twin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2015_955_MOESM1_ESM.pdf (598 kb)
Supplementary material, approximately 599 KB.


  1. [1]
    Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and eshelby twist. Science 2008, 320, 1060–1063.CrossRefGoogle Scholar
  2. [2]
    Vincent, J. F. V.; Bogatyreva, O. A.; Bogatyrev, N. R.; Bowyer, A.; Pahl, A.-K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482.Google Scholar
  3. [3]
    Han, B.; Huang, Y. L.; Li, R. P.; Peng, Q.; Luo, J. Y.; Pei, K.; Herczynski, A.; Kempa, K.; Ren, Z. F.; Gao, J. W. Bio-inspired networks for optoelectronic applications. Nat. Commun. 2014, 5, 5674.Google Scholar
  4. [4]
    Buhl, K.; Roth, Z.; Srinivasan, P.; Rumpf, R.; Johnson, E. Biologically inspired optics: Analog semiconductor model of the beetle exoskeleton. In Proc. SPIE 7057, The Nature of Light: Light in Nature II, San Diego, California, USA, 2008, pp 705707.CrossRefGoogle Scholar
  5. [5]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefGoogle Scholar
  6. [6]
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.CrossRefGoogle Scholar
  7. [7]
    Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377–1379.CrossRefGoogle Scholar
  8. [8]
    Parkinson, P.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Transient terahertz conductivity of GaAs nanowires. Nano Lett. 2007, 7, 2162–2165.CrossRefGoogle Scholar
  9. [9]
    Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quant. Electron. 2011, 35, 23–75.Google Scholar
  10. [10]
    Xia, H.; Lu, Z.-Y.; Li, T.-X.; Parkinson, P.; Liao, Z.-M.; Liu, F.-H.; Lu, W.; Hu, W.-D.; Chen, P.-P.; Xu, H.-Y. et al. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. ACS Nano 2012, 6, 6005–6013.CrossRefGoogle Scholar
  11. [11]
    Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photon. 2013, 7, 963–968.CrossRefGoogle Scholar
  12. [12]
    Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.Google Scholar
  13. [13]
    Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mat. Sci. Eng. B-Solid 1993, 18, 237–259.CrossRefGoogle Scholar
  14. [14]
    Dayeh, S. A.; Aplin, D. P. R.; Zhou, X. T.; Yu, P. K. L.; Yu, E. T.; Wang, D. L. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332.CrossRefGoogle Scholar
  15. [15]
    Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 81, 4458–4460.Google Scholar
  16. [16]
    Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Zou, X. M.; Liao, L.; Shi, S. X.; Chen, P. P.; Fan, Z. Y.; Ho, J. C. et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 2014, 8, 3628–3635.CrossRefGoogle Scholar
  17. [17]
    Doh, Y.-J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.CrossRefGoogle Scholar
  18. [18]
    Zhang, C.-Z.; Gao, H.; Zhang, D.; Zhang, X.-T. Local homoepitaxial growth and optical properties of ZnO polar nanoleaves. Chin. Phys. Lett. 2008, 25, 302–305.Google Scholar
  19. [19]
    Yang, Y.; Liao, Q. L.; Qi, J. J.; Guo, W.; Zhang, Y. Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. Phys. Chem. Chem. Phys. 2010, 12, 552–555.Google Scholar
  20. [20]
    Xu, H. L.; Wang, W. Z.; Zhu, W.; Zhou, L.; Ruan, M. L. Hierarchical-oriented attachment: From one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst. Growth Des. 2007, 7, 2720–2724.CrossRefGoogle Scholar
  21. [21]
    Xu, X. D.; Zhang, M.; Feng, J.; Zhang, M. L. Shapecontrolled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 2008, 62, 2787–2790.Google Scholar
  22. [22]
    He, Y. J.; Peng, J. F.; Chu, W.; Li, Y. Z.; Tong, D. G. Black mesoporous anatase TiO2 nanoleaves: A high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A 2014, 2, 1721–1731.Google Scholar
  23. [23]
    Samanta, P. K.; Basak, S.; Chaudhuri, P. R. Fern leaves: The secret life of zinc oxide. Mater. Today 2011, 14, 295.Google Scholar
  24. [24]
    Martelli, F.; Piccin, M.; Bais, G.; Jabeen, F.; Ambrosini, S.; Rubini, S.; Franciosi, A. Photoluminescence of Mn-catalyzed GaAs nanowires grown by molecular beam epitaxy. Nanotechnology 2007, 18, 125603.CrossRefGoogle Scholar
  25. [25]
    Li, J. Y.; Liu, J.; Wang, L.-S.; Chang, R. P. H. Physical and electrical properties of chemical vapor grown GaN nano/ microstructures. Inorg. Chem. 2008, 47, 10325–10329.Google Scholar
  26. [26]
    Di Giacomo, E.; Iannelli, M.; Frugis, G. TALE and shape: How to make a leaf different. Plants 2013, 2, 317–342.CrossRefGoogle Scholar
  27. [27]
    Nakata, M.; Okada, K. The leaf adaxial-abaxial boundary and lamina growth. Plants 2013, 2, 174–202.CrossRefGoogle Scholar
  28. [28]
    Tsiantis, M.; Langdale, J. A. The formation of leaves. Curr. Opin. Plant Biol. 1998, 1, 43–48.Google Scholar
  29. [29]
    Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. Growth and optical properties of nanometerscale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447–462.Google Scholar
  30. [30]
    Dick, K. A.; Deppert, K.; Mårtensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor−liquid−solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761–764.CrossRefGoogle Scholar
  31. [31]
    Dayeh, S. A.; Yu, E. T.; Wang, D. L. III−V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.CrossRefGoogle Scholar
  32. [32]
    Zhang, Z.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. Acta Mater. 2015, 92, 25–32.CrossRefGoogle Scholar
  33. [33]
    Stadelmann, P. Java-EMS: JEMS. http://cimeepflch/research/ jems (accessed on Oct 10, 2015).Google Scholar
  34. [34]
    Xu, H. Y.; Wang, Y.; Guo, Y.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Defect-free <110>zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 2012, 12, 5744–5749.CrossRefGoogle Scholar
  35. [35]
    Zhang, Z.; Zheng, K.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured <00\(\bar 1\)> InAs nanowires. Nano Lett. 2015, 15, 876–882.CrossRefGoogle Scholar
  36. [36]
    Wolf, D. Atomic-level geometry of crystalline interfaces. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 1–57.Google Scholar
  37. [37]
    Wolf, D.; Merkle, K. L. Correlation between the structure and energy of grain boundaries in metals. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 87–150.Google Scholar
  38. [38]
    Lee, B. T.; Lee, J. Y.; Bourret, E. D. Atomic structure of twins in GaAs. Appl. Phys. Lett. 1990, 57, 346–347.Google Scholar
  39. [39]
    Jin, L.; Wang, J. B.; Cao, G. Y.; Xu, Z. L.; Jia, S. F.; Choy, W. C. H.; Leung, Y. P.; Yuk, T. I. {113} twinned znse bicrystal nanobelts filled with <111> twinnings. J. Phys. Chem. C 2008, 112, 4903–4907.Google Scholar
  40. [40]
    Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res. 2014, 7, 1640–1649.CrossRefGoogle Scholar
  41. [41]
    Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.Google Scholar
  42. [42]
    Faust, J. W., Jr; John, H. F. The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism. J. Phys. Chem. Solids 1964, 25, 1407–1415.CrossRefGoogle Scholar
  43. [43]
    Gamalski, A. D.; Voorhees, P. W.; Ducati, C.; Sharma, R.; Hofmann, S. Twin plane re-entrant mechanism for catalytic nanowire growth. Nano Lett. 2014, 14, 1288–1292.CrossRefGoogle Scholar
  44. [44]
    Brenner, S. S.; Sears, G. W. Mechanism of whisker growth — III nature of growth sites. Acta Metall. 1956, 4, 268–270.CrossRefGoogle Scholar
  45. [45]
    Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y.-N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular III–V nanowires. Small 2007, 3, 389–393.CrossRefGoogle Scholar
  46. [46]
    Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Formation of hierarchical InAs nanoring / GaAs nanowire heterostructures. Angew. Chem., Int. Ed. 2009, 48, 780–783.Google Scholar
  47. [47]
    Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Polarity driven formation of InAs/GaAs hierarchical nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 201908.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Materials EngineeringThe University of QueenslandSt. LuciaAustralia
  2. 2.Centre for Microscopy and MicroanalysisThe University of QueenslandSt. LuciaAustralia
  3. 3.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaAustralia
  4. 4.Department of Electronic Materials Engineering, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations