Skip to main content
Log in

Mirror-twin induced bicrystalline InAs nanoleaves

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, leaf-like one-dimensional InAs nanostructures were grown by the metal–organic chemical vapor deposition method. Detailed structural characterization suggests that the nanoleaves contain relatively low-energy {122} or {133} mirror twins acting as their midribs and narrow sections connecting the nanoleaves and their underlying bases as petioles. Importantly, the mirror twins lead to identical lateral growth of the twinned structures in terms of crystallography and polarity, which is essential for the formation of lateral symmetrical nanoleaves. It has been found that the formation of nanoleaves is driven by catalyst energy minimization. This study provides a biomimic of leaf found in nature by fabricating a semiconductor nanoleaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and eshelby twist. Science 2008, 320, 1060–1063.

    Article  Google Scholar 

  2. Vincent, J. F. V.; Bogatyreva, O. A.; Bogatyrev, N. R.; Bowyer, A.; Pahl, A.-K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482.

    Google Scholar 

  3. Han, B.; Huang, Y. L.; Li, R. P.; Peng, Q.; Luo, J. Y.; Pei, K.; Herczynski, A.; Kempa, K.; Ren, Z. F.; Gao, J. W. Bio-inspired networks for optoelectronic applications. Nat. Commun. 2014, 5, 5674.

    Google Scholar 

  4. Buhl, K.; Roth, Z.; Srinivasan, P.; Rumpf, R.; Johnson, E. Biologically inspired optics: Analog semiconductor model of the beetle exoskeleton. In Proc. SPIE 7057, The Nature of Light: Light in Nature II, San Diego, California, USA, 2008, pp 705707.

    Chapter  Google Scholar 

  5. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

    Article  Google Scholar 

  6. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.

    Article  Google Scholar 

  7. Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377–1379.

    Article  Google Scholar 

  8. Parkinson, P.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Transient terahertz conductivity of GaAs nanowires. Nano Lett. 2007, 7, 2162–2165.

    Article  Google Scholar 

  9. Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quant. Electron. 2011, 35, 23–75.

    Google Scholar 

  10. Xia, H.; Lu, Z.-Y.; Li, T.-X.; Parkinson, P.; Liao, Z.-M.; Liu, F.-H.; Lu, W.; Hu, W.-D.; Chen, P.-P.; Xu, H.-Y. et al. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. ACS Nano 2012, 6, 6005–6013.

    Article  Google Scholar 

  11. Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photon. 2013, 7, 963–968.

    Article  Google Scholar 

  12. Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.

    Google Scholar 

  13. Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mat. Sci. Eng. B-Solid 1993, 18, 237–259.

    Article  Google Scholar 

  14. Dayeh, S. A.; Aplin, D. P. R.; Zhou, X. T.; Yu, P. K. L.; Yu, E. T.; Wang, D. L. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332.

    Article  Google Scholar 

  15. Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 81, 4458–4460.

    Google Scholar 

  16. Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Zou, X. M.; Liao, L.; Shi, S. X.; Chen, P. P.; Fan, Z. Y.; Ho, J. C. et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 2014, 8, 3628–3635.

    Article  Google Scholar 

  17. Doh, Y.-J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.

    Article  Google Scholar 

  18. Zhang, C.-Z.; Gao, H.; Zhang, D.; Zhang, X.-T. Local homoepitaxial growth and optical properties of ZnO polar nanoleaves. Chin. Phys. Lett. 2008, 25, 302–305.

    Google Scholar 

  19. Yang, Y.; Liao, Q. L.; Qi, J. J.; Guo, W.; Zhang, Y. Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. Phys. Chem. Chem. Phys. 2010, 12, 552–555.

    Google Scholar 

  20. Xu, H. L.; Wang, W. Z.; Zhu, W.; Zhou, L.; Ruan, M. L. Hierarchical-oriented attachment: From one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst. Growth Des. 2007, 7, 2720–2724.

    Article  Google Scholar 

  21. Xu, X. D.; Zhang, M.; Feng, J.; Zhang, M. L. Shapecontrolled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 2008, 62, 2787–2790.

    Google Scholar 

  22. He, Y. J.; Peng, J. F.; Chu, W.; Li, Y. Z.; Tong, D. G. Black mesoporous anatase TiO2 nanoleaves: A high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A 2014, 2, 1721–1731.

    Google Scholar 

  23. Samanta, P. K.; Basak, S.; Chaudhuri, P. R. Fern leaves: The secret life of zinc oxide. Mater. Today 2011, 14, 295.

    Google Scholar 

  24. Martelli, F.; Piccin, M.; Bais, G.; Jabeen, F.; Ambrosini, S.; Rubini, S.; Franciosi, A. Photoluminescence of Mn-catalyzed GaAs nanowires grown by molecular beam epitaxy. Nanotechnology 2007, 18, 125603.

    Article  Google Scholar 

  25. Li, J. Y.; Liu, J.; Wang, L.-S.; Chang, R. P. H. Physical and electrical properties of chemical vapor grown GaN nano/ microstructures. Inorg. Chem. 2008, 47, 10325–10329.

    Google Scholar 

  26. Di Giacomo, E.; Iannelli, M.; Frugis, G. TALE and shape: How to make a leaf different. Plants 2013, 2, 317–342.

    Article  Google Scholar 

  27. Nakata, M.; Okada, K. The leaf adaxial-abaxial boundary and lamina growth. Plants 2013, 2, 174–202.

    Article  Google Scholar 

  28. Tsiantis, M.; Langdale, J. A. The formation of leaves. Curr. Opin. Plant Biol. 1998, 1, 43–48.

    Google Scholar 

  29. Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. Growth and optical properties of nanometerscale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447–462.

    Google Scholar 

  30. Dick, K. A.; Deppert, K.; Mårtensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor−liquid−solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761–764.

    Article  Google Scholar 

  31. Dayeh, S. A.; Yu, E. T.; Wang, D. L. III−V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.

    Article  Google Scholar 

  32. Zhang, Z.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. Acta Mater. 2015, 92, 25–32.

    Article  Google Scholar 

  33. Stadelmann, P. Java-EMS: JEMS. http://cimeepflch/research/ jems (accessed on Oct 10, 2015).

    Google Scholar 

  34. Xu, H. Y.; Wang, Y.; Guo, Y.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Defect-free <110>zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 2012, 12, 5744–5749.

    Article  Google Scholar 

  35. Zhang, Z.; Zheng, K.; Lu, Z.-Y.; Chen, P.-P.; Lu, W.; Zou, J. Catalyst orientation-induced growth of defect-free zinc-blende structured <00\(\bar 1\)> InAs nanowires. Nano Lett. 2015, 15, 876–882.

    Article  Google Scholar 

  36. Wolf, D. Atomic-level geometry of crystalline interfaces. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 1–57.

    Google Scholar 

  37. Wolf, D.; Merkle, K. L. Correlation between the structure and energy of grain boundaries in metals. In Materials Interfaces: Atomic-Level Structure and Properties; Wolf, D.; Yip, S., Eds.; Chapman & Hall: Cambridge, UK, 1992; pp 87–150.

    Google Scholar 

  38. Lee, B. T.; Lee, J. Y.; Bourret, E. D. Atomic structure of twins in GaAs. Appl. Phys. Lett. 1990, 57, 346–347.

    Google Scholar 

  39. Jin, L.; Wang, J. B.; Cao, G. Y.; Xu, Z. L.; Jia, S. F.; Choy, W. C. H.; Leung, Y. P.; Yuk, T. I. {113} twinned znse bicrystal nanobelts filled with <111> twinnings. J. Phys. Chem. C 2008, 112, 4903–4907.

    Google Scholar 

  40. Zhang, Z.; Lu, Z. Y.; Xu, H. Y.; Chen, P. P.; Lu, W.; Zou, J. Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Res. 2014, 7, 1640–1649.

    Article  Google Scholar 

  41. Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Google Scholar 

  42. Faust, J. W., Jr; John, H. F. The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism. J. Phys. Chem. Solids 1964, 25, 1407–1415.

    Article  Google Scholar 

  43. Gamalski, A. D.; Voorhees, P. W.; Ducati, C.; Sharma, R.; Hofmann, S. Twin plane re-entrant mechanism for catalytic nanowire growth. Nano Lett. 2014, 14, 1288–1292.

    Article  Google Scholar 

  44. Brenner, S. S.; Sears, G. W. Mechanism of whisker growth — III nature of growth sites. Acta Metall. 1956, 4, 268–270.

    Article  Google Scholar 

  45. Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y.-N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular III–V nanowires. Small 2007, 3, 389–393.

    Article  Google Scholar 

  46. Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Formation of hierarchical InAs nanoring / GaAs nanowire heterostructures. Angew. Chem., Int. Ed. 2009, 48, 780–783.

    Google Scholar 

  47. Paladugu, M.; Zou, J.; Guo, Y.-N.; Zhang, X.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Polarity driven formation of InAs/GaAs hierarchical nanowire heterostructures. Appl. Phys. Lett. 2008, 93, 201908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Zheng or Jin Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soo, M.T., Zheng, K., Gao, Q. et al. Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res. 9, 766–773 (2016). https://doi.org/10.1007/s12274-015-0955-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0955-z

Keywords

Navigation