Nano Research

, Volume 9, Issue 3, pp 692–702 | Cite as

Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites

  • Miaoqiang Lyu
  • Jung-Ho Yun
  • Molang Cai
  • Yalong Jiao
  • Paul V. Bernhardt
  • Meng Zhang
  • Qiong Wang
  • Aijun Du
  • Hongxia Wang
  • Gang Liu
  • Lianzhou Wang
Research Article

Abstract

Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.

Keywords

methylammonium bismuth (III) iodide single crystal perovskite solar cells organic–inorganic hybrid material lead-free 

Supplementary material

12274_2015_948_MOESM1_ESM.pdf (2.5 mb)
Supplementary material, approximately 2612 KB.
12274_2015_948_MOESM2_ESM.cif (15 kb)
Supplementary material, approximately 14.7 KB.

References

  1. [1]
    Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.CrossRefGoogle Scholar
  2. [2]
    Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.CrossRefGoogle Scholar
  3. [3]
    Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.CrossRefGoogle Scholar
  4. [4]
    Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A holeconductor- free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.CrossRefGoogle Scholar
  5. [5]
    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.CrossRefGoogle Scholar
  6. [6]
    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9.Google Scholar
  7. [7]
    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.CrossRefGoogle Scholar
  8. [8]
    Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 2015, 6, 898–907.CrossRefGoogle Scholar
  9. [9]
    Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.CrossRefGoogle Scholar
  10. [10]
    Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127.CrossRefGoogle Scholar
  11. [11]
    Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organicinorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.CrossRefGoogle Scholar
  12. [12]
    Cortecchia, D.; Dewi, H. A.; Sabba, D.; Baikie, T.; Soci, C.; Mathews, N. “Green” 2D hybrid perovskites for perovskitebased solar cells. In European Optical Society Annual Meeting (EOSAM 2014), Berlin, 2014.Google Scholar
  13. [13]
    Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.CrossRefGoogle Scholar
  14. [14]
    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.CrossRefGoogle Scholar
  15. [15]
    Leblanc, N.; Mercier, N.; Zorina, L.; Simonov, S.; Auban-Senzier, P.; Pasquier, C. Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide [BiI3Cl2] polar chains and methylviologen dication. J. Am. Chem. Soc. 2011, 133, 14924–14927.CrossRefGoogle Scholar
  16. [16]
    Mitzi, D. B.; Brock, P. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 2001, 40, 2096–2104.CrossRefGoogle Scholar
  17. [17]
    Kawai, T.; Ishii, A.; Kitamura, T.; Shimanuki, S.; Iwata, M.; Ishibashi, Y. Optical absorption in band-edge region of (CH3NH3)3Bi2I9 single crystals. J. Phys. Soc. Jpn. 1996, 65, 1464–1468.CrossRefGoogle Scholar
  18. [18]
    Jakubas, R.; Zaleski, J.; Sobczyk, L. Phase transitions in (CH3NH3)3Bi2I9 (MAIB). Ferroelectrics 1990, 108, 109–114.CrossRefGoogle Scholar
  19. [19]
    Fisher, G. A.; Norman, N. C. The structures of the group 15 element(III) halides and halogenoanions. Adv. Inorg. Chem. 1994, 41, 233–271.CrossRefGoogle Scholar
  20. [20]
    Kawai, T.; Shimanuki, S. Optical studies of (CH3NH3)3Bi2I9 single crystals. Phys. Stat. Sol. (b) 1993, 177, K43–K45.CrossRefGoogle Scholar
  21. [21]
    Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337.CrossRefGoogle Scholar
  22. [22]
    Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.CrossRefGoogle Scholar
  23. [23]
    Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27.CrossRefGoogle Scholar
  24. [24]
    Ren, S. Q.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N.; Bulović, V.; Bawendi, M.; Gradečak, S. Inorganicorganic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011, 11, 3998–4002.CrossRefGoogle Scholar
  25. [25]
    Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.CrossRefGoogle Scholar
  26. [26]
    Chen, Z.; Wang, J. J.; Ren, Y. H.; Yu, C. L.; Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 2012, 101, 093901.CrossRefGoogle Scholar
  27. [27]
    Hrizi, C.; Chaari, N.; Abid, Y.; Chniba-Boudjada, N.; Chaabouni, S. Structural characterization, vibrational and optical properties of a novel one-dimensional organic–inorganic hybrid based-iodobismuthate(III) material, [C10H7NH3]BiI4. Polyhedron 2012, 46, 41–46.CrossRefGoogle Scholar
  28. [28]
    Leblanc, N.; Mercier, N.; Allain, M.; Toma, O.; Auban-Senzier, P.; Pasquier, C. The motley family of polar compounds (MV)[M(X5−xX′x)] based on anionic chains of trans-connected M(III)(X, X′)6 octahedra (M = Bi, Sb; X, X′ = Cl, Br, I) and methylviologen (MV) dications. J. Solid State Chem. 2012, 195, 140–148.CrossRefGoogle Scholar
  29. [29]
    Liu, B.; Xu, L.; Guo, G.-C.; Huang, J.-S. Three inorganic–organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with charaterizations of diffuse reflectance spectra. J. Solid State Chem. 2006, 179, 1611–1617.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miaoqiang Lyu
    • 1
  • Jung-Ho Yun
    • 1
  • Molang Cai
    • 2
  • Yalong Jiao
    • 2
  • Paul V. Bernhardt
    • 3
  • Meng Zhang
    • 1
  • Qiong Wang
    • 1
  • Aijun Du
    • 2
  • Hongxia Wang
    • 2
  • Gang Liu
    • 4
  • Lianzhou Wang
    • 1
  1. 1.Nanomaterials Centre, School of Chemical Engineering and AIBNThe University of QueenslandSt Lucia, BrisbaneAustralia
  2. 2.School of Chemistry, Physics and Mechanical Engineering, Science and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
  3. 3.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
  4. 4.Advanced Carbon DivisionInstitute of Metal Research Chinese Academy of Sciences (IMR CAS)ShenyangChina

Personalised recommendations